Fabrication and Characterization of Al-SiCp-Fly Ash Composite using Stir Casting Process

2015 ◽  
Vol 1 (1) ◽  
pp. 19-29 ◽  
Author(s):  
B Sakthi Vijay ◽  
◽  
S Senthil Murugan ◽  
P Nagaraj ◽  
◽  
...  
Author(s):  
G. Sathishkumar ◽  
S.J. Irudayaraja ◽  
S. Sivaganesan ◽  
M. Thuyavan

Metal matrix composites are of great interest in industrial applications for its light weight with high specific strength, stiffness and heat resistance. The processing of MMCs by stir casting process is an effective way of manufacturing. In this paper the comparison of mechanical properties of Aluminium 7075 as a base metal and varying composition of fly ash by 3 and 6 wt.% SiC and 7% fly ash as reinforcement is carried out. Scanning electron microscope was used to confirm the presence of SiC and fly ash. The composites with 6% SiC was found to have maximum hardness whereas composites of 6% and 5 % fly ash were found to have minimum hardness. The mechanical properties such as wear resistance were studied. From the results, it has been finalized that the addition of 6% SiC was identified to show the least wear rate.


2014 ◽  
Vol 4 (3) ◽  
pp. 27-32
Author(s):  
Jeevan Singh Bisht ◽  
◽  
Akshay Dvivedi ◽  
Apurbba Kumar Sharma ◽  
◽  
...  

2017 ◽  
Vol 25 (3) ◽  
pp. 209-214 ◽  
Author(s):  
G. Venkatachalam ◽  
A. Kumaravel

This paper presents the characterization of A356 composite reinforced with fly ash and basalt ash produced by stir casting method. Aluminium metal matrix composites (AMC) are used in wide variety of applications such as structural, aerospace, marine, automotive etc. Stir casting is cost effective manufacturing process and it is useful to enhance the attractive properties of AMCs. Three sets of hybrid AMC are prepared by varying the weight fraction of the reinforcements (3% basalt + 7% fly ash, 5% basalt + 5% fly, 7% basalt + 3% fly ash). The effect of reinforcements on the mechanical properties of the hybrid composites such as hardness, tensile, compressive and impact strength were studied. The obtained results reveal that tensile, compressive and impact strength was increased when weight fraction of fly ash increased, whereas the hardness increases when weight fraction of the basalt ash increased. Microscopic study reveals the dispersion of the reinforcements in the matrix.


Sign in / Sign up

Export Citation Format

Share Document