Anticorrosion behaviour of amorphous silicon-based coatings prepared by remote cold plasma-assisted chemical vapour deposition process

Author(s):  
A. Delimi

Organosilicon films were deposited on carbon steel samples using remote microwave nitrogen plasma-assisted chemical vapour deposition. The deposits were obtained using TetraMethyDisoloxane monomer mixed with oxygen. The formed films were characterised using electron microprobe analysis, Fourier transformed infrared spectroscopy, contact angle measurements, scanning electron microscopy and atomic force microscopy. The electrochemical properties of the organosilicon coatings were evaluated using gravimetric experiments next to electrochemical tests. A significant increase in the corrosion resistance behaviour of the organosilicon coated carbon steel specimen was found when the samples were immersed in 3% aqueous sodium chloride solutions. Also, the surface pre-treatment process of carbon steel had an important influence on the morphological and electrochemical behaviour. Argon pre-treatment improves significantly the corrosion resistance or organosilicon coated steel samples. Gravimetric tests in particular showed that samples pre-treated with argon result in lower weight loss and decreased corrosion rates compared to interfaces pre-treated with nitrogen plasma. Keywords: PACVD, carbon steel, organ silicon, corrosion, pre-treatment, electrochemical impedance spectroscopy.

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2511
Author(s):  
Dali Ji ◽  
Xinyue Wen ◽  
Tobias Foller ◽  
Yi You ◽  
Fei Wang ◽  
...  

Due to the excellent chemical inertness, graphene can be used as an anti-corrosive coating to protect metal surfaces. Here, we report the growth of graphene by using a chemical vapour deposition (CVD) process with ethanol as a carbon source. Surface and structural characterisations of CVD grown films suggest the formation of double-layer graphene. Electrochemical impedance spectroscopy has been used to study the anticorrosion behaviour of the CVD grown graphene layer. The observed corrosion rate of 8.08 × 10−14 m/s for graphene-coated copper is 24 times lower than the value for pure copper which shows the potential of graphene as the anticorrosive layer. Furthermore, we observed no significant changes in anticorrosive behaviour of the graphene coated copper samples stored in ambient environment for more than one year.


2015 ◽  
Vol 1096 ◽  
pp. 22-26
Author(s):  
Efstathios K. Polychroniadis ◽  
Mamour Sall ◽  
N. Chandran

This work was performed on 3C-SiC layers grown on 4H-SiC substrates by chemical vapour deposition after a surface pre-treatment using GeH4 gas. By means of TEM, the effects of different GeH4 fluxes in the 3C layer quality has been studied and compared. An optimal GeH4 flux permits to drastically reduce twin boundaries but another type of defect occurs and has been widely studied in this paper.


2018 ◽  
Vol 56 (3B) ◽  
pp. 35
Author(s):  
Nguyen Van Chi ◽  
Pham Trung San ◽  
To Thi Xuan Hang

Carbon steel was treated by immersion in silane doped hexafluorozirconic acid solution. Treated surface was characterized by field emission scanning electron microscopy (FE-SEM) and electrochemical methods. The effect of ZrO2/silane pretreatment on the protective properties of powder coating was studied by adhesion measurement and electrochemical impedance spectroscopy (EIS). The obtained results showed that the morphology and electrochemical characteristics of ZrO2/silane film depend on solution pH. Surface morphology was uniform and compact at solution pH = 4. The best corrosion performance obtained with the film formed in solution with pH and immersion time of 4 and 4 mins, respectively. The ZrO2/silane pretreatment significantly improved adhesion and corrosion resistance of powder coating on carbon steel.


1999 ◽  
Vol 09 (PR8) ◽  
pp. Pr8-395-Pr8-402 ◽  
Author(s):  
B. Armas ◽  
M. de Icaza Herrera ◽  
C. Combescure ◽  
F. Sibieude ◽  
D. Thenegal

Sign in / Sign up

Export Citation Format

Share Document