Mapping of Micro-Urban Heat Islands and Land Cover Changes: A Case in Chennai City, India

Author(s):  
Lilly Rose Amirtham ◽  
Monsingh David Devadas ◽  
Mohana Perumal
Author(s):  
Ehsan Kamali Maskooni ◽  
Hossein Hashemi ◽  
Ronny Berndtsson ◽  
Peyman Daneshkar Arasteh ◽  
Mohammad Kazemi

2018 ◽  
Vol 136 ◽  
pp. 279-292 ◽  
Author(s):  
Janilci Serra Silva ◽  
Richarde Marques da Silva ◽  
Celso Augusto Guimarães Santos

Author(s):  
Tao Chen ◽  
Anchang Sun ◽  
Ruiqing Niu

Man-made materials now cover a dominant proportion of urban areas, and such conditions not only change the absorption of solar radiation, but also the allocation of the solar radiation and cause the surface urban heat island effect, which is considered a serious problem associated with the deterioration of urban environments. Although numerous studies have been performed on surface urban heat islands, only a few have focused on the effect of land cover changes on surface urban heat islands over a long time period. Using six Landsat image scenes of the Metropolitan Development Area of Wuhan, our experiment (1) applied a mapping method for normalized land surface temperatures with three land cover fractions, which were impervious surfaces, non-chlorophyllous vegetation and soil and vegetation fractions, and (2) performed a fitting analysis of fierce change areas in the surface urban heat island intensity based on a time trajectory. Thematic thermal maps were drawn to analyze the distribution of and variations in the surface urban heat island in the study area. A Multiple Endmember Spectral Mixture Analysis was used to extract the land cover fraction information. Then, six ternary triangle contour graphics were drawn based on the land surface temperature and land cover fraction information. A time trajectory was created to summarize the changing characteristics of the surface urban heat island intensity. A fitting analysis was conducted for areas showing fierce changes in the urban heat intensity. Our results revealed that impervious surfaces had the largest impacts on surface urban heat island intensity, followed by the non-chlorophyllous vegetation and soil fraction. Moreover, the results indicated that the vegetation fraction can alleviate the occurrence of surface urban heat islands. These results reveal the impact of the land cover fractions on surface urban heat islands. Urban expansion generates impervious artificial objects that replace pervious natural objects, which causes an increase in land surface temperature and results in a surface urban heat island.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
K. A. Ishola ◽  
E. C. Okogbue ◽  
O. E. Adeyeri

The fast urban expansion has led to the transformation of the natural landscape into anthropogenic surfaces. The city of Abeokuta, for instance, is located in a region experiencing rapid urbanization, which has produced a remarkable effect on the surface thermal response. This effect significantly influences urban internal microclimatology on a regional scale. In this study, the surface temperatures and land cover types retrieved from Landsat TM and ETM+ images of Abeokuta city for 1984, 2003, and 2014 were analyzed. A quantitative approach was used to assess surface urban heat islands through the relationships among surface temperature and land cover types. Results showed that impervious surface areas were found to be correlated positively with high temperatures. Conversely, vegetated areas and bare surfaces correlated positively with mid temperature zones. This study found that areas with increasing impervious surfaces will accelerate LST rise and consequently lead to increasing effect of surface urban heat islands. These findings pose a major challenge to urban planners. However, the study would help to quantify the impacts of different scenarios (e.g., vegetation loss to accommodate urban growth) on LST and consequently to devise appropriate policy measures.


2021 ◽  
Vol 13 (24) ◽  
pp. 13824
Author(s):  
Moein Atri ◽  
Sahar Nedae-Tousi ◽  
Sina Shahab ◽  
Ebrahim Solgi

In recent decades, unsustainable urban development stemming from uncontrolled changes in land cover and the accumulation of population and activities have given rise to adverse environmental consequences, such as the formation of urban heat islands (UHIs) and changes in urban microclimates. The formation and intensity of UHIs can be influenced not only by the type of land cover, but also by other factors, such as the spatial patterns of thermal clusters (e.g., dimensions, contiguity, and integration). By emphasising the differences between semi-arid and cold-and-humid climates in terms of the thermal−spatial behaviours of various types of land cover in these climates, this paper aims to assess the behavioural patterns of thermal clusters in Tehran, Iran. To this end, the relationship between the land surface temperature (LST) and the types of land cover is first demonstrated using combined multispectral satellite images taken by Operational Land Imager (OLI), Thermal Infrared Sensor (TIRS) of the Landsat8 and MODIS, and Sentinel satellites to determine LST and land cover. The effects of different behavioural patterns of thermal clusters on the formation of daytime urban heat islands are then analysed through spatial cross-correlation analysis. Lastly, the thermal behaviours of each cluster are separately examined to reveal how their spatial patterns, such as contiguity, affect the intensity and formation of UHI, with the assumption that each point in a contiguous surface may exhibit different thermal behaviours, depending on its distance from the edge or centre. The results of this study show that the daytime UHIs do not occur in the central parts of Tehran, and instead they are created in the surrounding layer, which mostly consists of barren cover. This finding contrasts with previous research conducted regarding cities located in cold-and-humid climates. Our research also finds that the more compact the hot and cool clusters are, the more contiguous they become, which leads to an increase in UHIs. The results suggest that for every 100 pix/km2 increase, the cluster temperature increases by approximately 0.7−1 °C. Additionally, placing cool clusters near or in combination with hot clusters interrupts the effect of the hot clusters, leading to a significant temperature reduction. The paper concludes with recommendations for potential sustainable and context-based solutions to UHI problems in semi-arid climates that relate to the determination of the optimal contiguity distance and land use integration patterns for thermal clusters.


Sign in / Sign up

Export Citation Format

Share Document