scholarly journals Numerical Simulation and Experimental of Residual Stress Field of SAE1070 Spring Steel Induced by Laster Shock

2013 ◽  
Vol 5 (20) ◽  
pp. 4869-4877 ◽  
Author(s):  
Bing Han ◽  
Changliang Xu ◽  
Jialian Shi ◽  
Hua Song
2013 ◽  
Vol 345 ◽  
pp. 312-315 ◽  
Author(s):  
Bing Han ◽  
Yan Hua Wang ◽  
Chang Liang Xu

Water-jet cavitation peening is a new technology for surface modification of metallic materials. Compress residual stress layer is induced by impact wave pressure in the submerged cavitating jets processing. Based on ANSYS/LS-DYNA finite element analysis software, residual stress field in the SAE1070 spring steel material surface induced by cavitate-jet water peening process is simulated, the magnitude and variation rules of the residual stress along the layer depth under different conditions is obtained. In order to verify the correctness of the numerical simulation, the size and distribution of residual stress by the X-ray diffraction method. The results show that the numerical simulation and experimental results are well consistent.


2016 ◽  
Vol 43 (8) ◽  
pp. 0802007
Author(s):  
汪静雪 Wang Jingxue ◽  
章艳 Zhang Yan ◽  
张兴权 Zhang Xingquan ◽  
戚晓利 Qi Xiaoli ◽  
裴善报 Pei Shanbao ◽  
...  

2009 ◽  
Vol 15 ◽  
pp. 109-114 ◽  
Author(s):  
G. Urriolagoitia-Sosa ◽  
E. Zaldivar-González ◽  
J.M. Sandoval Pineda ◽  
J. García-Lira

The interest on the application of the shot peening process to arrest and/or delay crack growth is rising. The main effect of the shot peening technique is to introduce a residual stress field that increases the working life of mechanical components. In this paper, it is presented the numerical simulation (FEM) of the shot peening process and the effect of introducing a residual stress field. Besides, the consequence of changing the sizes of the impacting ball is analyzed. This work also used the Crack Compliance Method (CCM) for the determination of residual stresses in beams subjected to a numerical simulation of a shot peening process. The numerical results obtained provide a quantitative demonstration of the effect of shot peening on the introduction of residual stresses by using different sizes of impacting balls and assess the efficiency of the CCM.


2014 ◽  
Vol 34 (4) ◽  
pp. 0414003
Author(s):  
罗密 Luo Mi ◽  
罗开玉 Luo Kaiyu ◽  
王庆伟 Wang Qingwei ◽  
鲁金忠 Lu Jinzhong

2010 ◽  
Vol 97-101 ◽  
pp. 3816-3819
Author(s):  
X.D. Yang ◽  
Jian Zhong Zhou ◽  
Shu Huang ◽  
Ling Ling Hu ◽  
Cheng Dong Wang

A numerical analytical model for both-side laser shot peening (LSP) of specimen with center-hole was established, the influence of the center-hole on peening effect was investigated, and the 3D residual stress distributions of ZK60 specimen after one-side and both-side LSP were analyzed. The results showed that compressive residual stresses were obtained at the both sides of specimen after both-side LSP, with a stress value of -179.41MPa on the bottom surface, much larger than that of one-side LSP. The typical experiment of LSP for ZK60 specimen was carried out and the experimental data were well correlated with the simulated results.


2010 ◽  
Vol 24-25 ◽  
pp. 253-259 ◽  
Author(s):  
G. Urriolagoitia-Sosa ◽  
B. Romero-Ángeles ◽  
Luis Héctor Hernández-Gómez ◽  
G. Urriolagoitia-Calderón ◽  
Juan Alfonso Beltrán-Fernández ◽  
...  

The understanding of how materials fail is still today a fundamental research problem for scientist and engineers. The main concern is the assessment of the necessary conditions to propagate a crack that will eventually lead to failure. Nevertheless, this kind of analysis tends to be more complicated, when a prior history in the material is taken into consideration and it will be extremely important to recognize all the factors involved in this process. In this work, a numerical simulation of the introduction of residual stresses, which change the crack initiation conditions, in a modified compact tensile specimen to change the condition of crack initiation is presented. Four numerical analyses were carried out; an initial evaluation was performed in a specimen without a crack and it was used for the estimation of a residual stress field produced by an overload; three more cases were simulated and a crack was introduced in each specimen (1 mm, 5 mm and 10 mm, respectively). The overload was then applied to set up a residual stress field into the component; furthermore, in each case the crack compliance method (CCM) was applied to measure the induced residual stress field. By performing this numerical simulation, the accuracy of the crack compliance method can be evaluated. On the other hand, elastic-plastic finite element analysis was utilized for the residual stress estimation. The numerical analysis was based on the mechanical properties of a biocompatible material (AISI 316L). The obtained results provided significant data about diverse factors, like; the manner in which a residual stress field could modify the crack initiation conditions, the convenient set up for induction of a beneficial residual stresses field, as well as useful information that can be applied for the experimental implementation of this research.


2005 ◽  
Vol 392 (1-2) ◽  
pp. 240-247 ◽  
Author(s):  
Qingxiang Yang ◽  
Xuejun Ren ◽  
Yukui Gao ◽  
Yanli Li ◽  
Yanhui Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document