scholarly journals The Effects of Cannabinoid System on Acute Lung Injury Induced by Mesenteric Ischemia/Reperfusion in Rats

Author(s):  
Emine Yilmaz-Can
2021 ◽  
Vol 263 ◽  
pp. 291
Author(s):  
Georgia Kostopanagiotou ◽  
Efthimios Avgerinos ◽  
Konstantinos Kostopanagiotou ◽  
Nikolaos Arkadopoulos ◽  
Ioanna Andreadou ◽  
...  

2021 ◽  
Author(s):  
Can Jin ◽  
Shucheng Zhang ◽  
Linlin Wu ◽  
Bohan Li ◽  
Meimei Shi ◽  
...  

Abstract Rationale: It is unclear whether removing the danger-associated molecular patterns (DAMPs) of gut lymph (GL) in the rats of gut ischemia-reperfusion injury (GIRI) model may reduce the distant organ lung injury.Objective: To determine whether oXiris gut lymph purification (GLP) may remove the DAMPs of GL in the rats’ model of acute lung injury (ALI) caused by GIRI.Methods: The experimental rats were divided into four groups: Sham group, GIRI group, GIRI + gut lymph drainage (GLD) group, and GIRI + GLP group. After successful modeling, the lung tissue samples of rats in each group were taken for hematoxylin-eosin (HE) staining and detection of expression levels of apoptotic indexes. The level of DAMPs was detected in blood and lymph. We observed its microstructure of type II alveolar epithelial cells (AECⅡ), and detected the expression level of apoptosis indexes.Measurements and Main Results: GIRI-induced destruction of alveolar structure, thickened alveolar walls, inflammatory cell infiltration emerged in the GIRI group, HMGB-1 and IL-6 levels significantly increased, and HSP70 and IL-10 levels reduced in lymph and serum. Compared with GIRI group, the lung tissue damage in GIRI + GLP group significantly improved, the expression level of HMGB-1 and IL-6 in the lymph and serum reduced, and HSP70 and IL-10 increased. The organelle structure of AECII in GIRI + GLP group was significantly improved compared with the GIRI group. Conclusions: oXiris GLP blocks the key link between DAMPs and mononuclear phagocyte system to inhibit inflammation and cell apoptosis, thereby reducing ALI induced by GIRI.


2013 ◽  
Vol 93 (7) ◽  
pp. 792-800 ◽  
Author(s):  
Zhongwei Yang ◽  
Yuxiao Deng ◽  
Diansan Su ◽  
Jie Tian ◽  
Yuan Gao ◽  
...  

2018 ◽  
Vol 46 (2) ◽  
pp. 781-792 ◽  
Author(s):  
DongDong Chai ◽  
Lei Zhang ◽  
SiWei Xi ◽  
YanYong Cheng ◽  
Hong Jiang ◽  
...  

Background/Aims: Nuclear erythroid 2-related factor-2 (Nrf2) is a major stress-response transcription factor that has been implicated in regulating ischemic angiogenesis. We investigated the effects of Nrf2 in regulating revascularization and modulating acute lung injury. Methods: The expression of Nrf2 and sirtuin1 (Sirt1) was assessed in lung tissue by western blotting and immunofluorescence staining after intestinal ischemia/reperfusion (IIR) in Nrf2–/– and wild-type (WT) mice. The involvement of Nrf2 in angiogenesis, cell viability, and migration was investigated in human pulmonary microvascular endothelial cells (PMVECs). Additionally, the influence of Nrf2 expression on NOX pathway activation was measured in PMVECs after oxygen–glucose deprivation/reoxygenation. Results: We found activation and nuclear accumulation of Nrf2 in lung tissue after IIR. Compared to IIR in WT mice, IIR in Nrf2–/– mice significantly enhanced leukocyte infiltration and collagen deposit, and inhibited endothelial cell marker CD31 expression. Nrf2 upregulation and translocation into the nucleus stimulated by Sirt1 overexpression exhibited remission of histopathologic changes and enhanced CD31 expression. Nrf2 knockdown repressed non-phagocytic cell oxidase 4 (NOX4), hypoxia-inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF) expression after IIR. Nrf2 upregulation by Sirt1 enhances NOX4, HIF-1α and VEGF expression after IIR in WT mice. Furthermore, Nrf2 knockdown suppressed cell viability, capillary tube formation and cell migration in PMVECs after oxygen–glucose deprivation/reoxygenation and also inhibited NOX4, HIF-1 and VEGF expression. Moreover, NOX4 knockdown in PMVECs decreased the levels of VEGF, HIF-1α and angiogenesis. Conclusion: Nrf2 stimulation by Sirt1 plays an important role in sustaining angiogenic potential through NOX4-mediated gene regulation.


2003 ◽  
Vol 54 (5) ◽  
pp. 532
Author(s):  
Young Man Lee ◽  
Sung Chul Kwon ◽  
Sang Chae Lee

2008 ◽  
Vol 295 (3) ◽  
pp. L379-L399 ◽  
Author(s):  
Gustavo Matute-Bello ◽  
Charles W. Frevert ◽  
Thomas R. Martin

Acute lung injury in humans is characterized histopathologically by neutrophilic alveolitis, injury of the alveolar epithelium and endothelium, hyaline membrane formation, and microvascular thrombi. Different animal models of experimental lung injury have been used to investigate mechanisms of lung injury. Most are based on reproducing in animals known risk factors for ARDS, such as sepsis, lipid embolism secondary to bone fracture, acid aspiration, ischemia-reperfusion of pulmonary or distal vascular beds, and other clinical risks. However, none of these models fully reproduces the features of human lung injury. The goal of this review is to summarize the strengths and weaknesses of existing models of lung injury. We review the specific features of human ARDS that should be modeled in experimental lung injury and then discuss specific characteristics of animal species that may affect the pulmonary host response to noxious stimuli. We emphasize those models of lung injury that are based on reproducing risk factors for human ARDS in animals and discuss the advantages and disadvantages of each model and the extent to which each model reproduces human ARDS. The present review will help guide investigators in the design and interpretation of animal studies of acute lung injury.


2020 ◽  
Vol 246 ◽  
pp. 629
Author(s):  
Efthimios D. Avgerinos ◽  
Georgia Kostopanagiotou ◽  
Kostas Kostopanagiotou ◽  
Nikolaos Kopanakis ◽  
Ioanna Andreadou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document