scholarly journals Hybrid strategy for reliable packet transfer and packet loss reduction in cognitive radio Ad-Hoc Network

Author(s):  
C.V. Subhaskara Reddy ◽  
M. V. Subramanyam ◽  
P. Ramana Reddy
Author(s):  
Aarti Sahu ◽  
Laxmi Shrivastava

A wireless ad hoc network is a decentralized kind of wireless network. It is a kind of temporary Computer-to-Computer connection. It is a spontaneous network which includes mobile ad-hoc network (MANET), vehicular ad-hoc network (VANET) and Flying ad-hoc network (FANET). Mobile Ad Hoc Network (MANET) is a temporary network that can be dynamically formed to exchange information by wireless nodes or routers which may be mobile. A VANET is a sub form of MANET. It is an technology that uses vehicles as nodes in a network to make a mobile network. FANET is an ad-hoc network of flying nodes. They can fly independently or can be operated distantly. In this research paper Fuzzy based control approaches in wireless network detects & avoids congestion by developing the ad-hoc fuzzy rules as well as membership functions.In this concept, two parameters have been used as: a) Channel load b) The size of queue within intermediate nodes. These parameters constitute the input to Fuzzy logic controller. The output of Fuzzy logic control (sending rate) derives from the conjunction with Fuzzy Rules Base. The parameter used input channel load, queue length which are produce the sending rate output in fuzzy logic. This fuzzy value has been used to compare the MANET, FANET and VANET in terms of the parameters Throughput, packet loss ratio, end to end delay. The simulation results reveal that usage of Qual Net 6.1 simulator has reduced packet-loss in MANET with comparing of VANET and FANET.


2015 ◽  
Vol 62 (2) ◽  
pp. 141-145 ◽  
Author(s):  
Rezvi Shahariar ◽  
Abu Naser

In mobile ad hoc network communication is performed usually by using only send and receive messages and every node is powered by limited energy from low capacity battery. Every send or receive message takes particular amount of energy from the node. So node’s total energy level gradually decreases each time while it is sending or receiving something. In this way node will die out and packets coming from the source will be dropped since one of the routing node on the current route is no longer functioning. These packet loss events are observed and minimized in this paper. In the proposed approach, when source receives Warning Message from any routing node on the ongoing route then it will stop sending packets on the ongoing route. Critical energy level of routing node has been defined to generate a Warning Message when routing node’s energy level reduces to critical energy level. DOI: http://dx.doi.org/10.3329/dujs.v62i2.21979 Dhaka Univ. J. Sci. 62(2): 141-145, 2014 (July)


2020 ◽  
Vol 9 (3) ◽  
pp. 40 ◽  
Author(s):  
Afsana Ahamed ◽  
Hamid Vakilzadian

A vehicular ad hoc network (VANET) is a technology in which moving cars are used as routers (nodes) to establish a reliable mobile communication network among the vehicles. Some of the drawbacks of the routing protocol, Ad hoc On-Demand Distance Vector (AODV), associated with VANETs are the end-to-end delay and packet loss. We modified the AODV routing protocols to reduce the number of route request (RREQ) and route reply (RREP) messages by adding direction parameters and two-step filtering. The two-step filtering process reduces the number of RREQ and RREP packets, reduces the packet overhead, and helps to select the stable route. In this study, we show the impact of the direction parameter in reducing the end-to-end delay and the packet loss in AODV. The simulation results show a 1.4% reduction in packet loss, an 11% reduction in the end-to-end delay, and an increase in throughput.


Sign in / Sign up

Export Citation Format

Share Document