scholarly journals Spin 1 particle with anomalous magnetic moment in the Coulomb field. Nonrelativistic theory

Author(s):  
Ya.A. Voynova ◽  
◽  
N.G. Krylova ◽  
E.M. Ovsiyuk ◽  
◽  
...  
Author(s):  
Ya. A. Voynova ◽  
N. G. Krylova ◽  
E. M. Оvsiyuk

Herein, a spin 1 particle with anomalous magnetic moment in an external Coulomb field is studied. We start with the relativistic tensor system of the Proca type in Cartesian coordinates. In these equations the Γ parameter is present related to an additional characteristic of the particle. In the case of an external magnetic field, it is interpreted as an anomalous magnetic moment. In the presence of an external electric field, additional interaction terms are presented as well; moreover, the terms of the first and second orders in parameter Γ appear. The case of an external Coulomb field is considered in detail. In the nonrelativistic approximation a Pauli type equation is obtained. In the nonrelativistic equation the separation of the variables with the use of spherical vectors is realized. One separate 2-nd order differential equation is found, in which additional interaction terms are missing. Besides, we derive systems of two coupled 2-nd order equations wherein linear and quadratic in parameter Γ interaction terms are presented. Previously, another approach was developed for analyzing the vector particle with anomalous magnetic moment. It was based on the use of tetrad formalism and separation of the variables in the Duffin – Kemmer equation with the help of the Wigner function. The nonrelativistic approximation was performed directly in the system of radial equations. Besides, previously formal Frobenius type solutions for an arising 4-th order differential equation were constructed; however, physically interpretable energy spectra were not found. We have proved that the radial equations derived by different methods are the same up to a simple liner transformation over two radial functions. In this paper, we have obtained a simpler 4-th order equation, the construction of Frobenius solutions becomes technically easier, but physical energy spectra are not found either.


2020 ◽  
Vol 34 ◽  
pp. 01001
Author(s):  
Vladimir Balan ◽  
Viktor Red’kov ◽  
Elena Ovsiyuk ◽  
Nina Krylova

We consider the problem of the spin 1 particle with anomalous magnetic moment in an external Coulomb field, in non-relativistic approximation. The structural stability of the extended second order ODE system is studied.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Wen Qin ◽  
Ling-Yun Dai ◽  
Jorge Portolés

Abstract A coherent study of e+e− annihilation into two (π+π−, K+K−) and three (π+π−π0, π+π−η) pseudoscalar meson production is carried out within the framework of resonance chiral theory in energy region E ≲ 2 GeV. The work of [L.Y. Dai, J. Portolés, and O. Shekhovtsova, Phys. Rev. D88 (2013) 056001] is revisited with the latest experimental data and a joint analysis of two pseudoscalar meson production. Hence, we evaluate the lowest order hadronic vacuum polarization contributions of those two and three pseudoscalar processes to the anomalous magnetic moment of the muon. We also estimate some higher-order additions led by the same hadronic vacuum polarization. Combined with the other contributions from the standard model, the theoretical prediction differs still by (21.6 ± 7.4) × 10−10 (2.9σ) from the experimental value.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ryuichiro Kitano ◽  
Hiromasa Takaura ◽  
Shoji Hashimoto

Abstract We perform a numerical computation of the anomalous magnetic moment (g − 2) of the electron in QED by using the stochastic perturbation theory. Formulating QED on the lattice, we develop a method to calculate the coefficients of the perturbative series of g − 2 without the use of the Feynman diagrams. We demonstrate the feasibility of the method by performing a computation up to the α3 order and compare with the known results. This program provides us with a totally independent check of the results obtained by the Feynman diagrams and will be useful for the estimations of not-yet-calculated higher order values. This work provides an example of the application of the numerical stochastic perturbation theory to physical quantities, for which the external states have to be taken on-shell.


2021 ◽  
Vol 103 (1) ◽  
Author(s):  
Debajyoti Choudhury ◽  
Suvam Maharana ◽  
Vandana Sahdev ◽  
Divya Sachdeva

1965 ◽  
Vol 140 (2B) ◽  
pp. B397-B407 ◽  
Author(s):  
S. D. Drell ◽  
H. R. Pagels

Sign in / Sign up

Export Citation Format

Share Document