scholarly journals On local antimagic vertex coloring of corona products related to friendship and fan graph

2021 ◽  
Vol 5 (2) ◽  
pp. 110
Author(s):  
Zein Rasyid Himami ◽  
Denny Riama Silaban

Let <em>G</em>=(<em>V</em>,<em>E</em>) be connected graph. A bijection <em>f </em>: <em>E</em> → {1,2,3,..., |<em>E</em>|} is a local antimagic of <em>G</em> if any adjacent vertices <em>u,v</em> ∈ <em>V</em> satisfies <em>w</em>(<em>u</em>)≠ <em>w</em>(<em>v</em>), where <em>w</em>(<em>u</em>)=∑<sub>e∈E(u) </sub><em>f</em>(<em>e</em>), <em>E</em>(<em>u</em>) is the set of edges incident to <em>u</em>. When vertex <em>u</em> is assigned the color <em>w</em>(<em>u</em>), we called it a local antimagic vertex coloring of <em>G</em>. A local antimagic chromatic number of <em>G</em>, denoted by <em>χ</em><sub>la</sub>(<em>G</em>), is the minimum number of colors taken over all colorings induced by the local antimagic labeling of <em>G</em>. In this paper, we determine the local antimagic chromatic number of corona product of friendship and fan with null graph on <em>m</em> vertices, namely, <em>χ</em><sub>la</sub>(<em>F</em><sub>n</sub> ⊙ \overline{K_m}) and <em>χ</em><sub>la</sub>(<em>f</em><sub>(1,n)</sub> ⊙ \overline{K_m}).

CAUCHY ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 40
Author(s):  
Siti Aisyah ◽  
Ridho Alfarisi ◽  
Rafiantika M. Prihandini ◽  
Arika Indah Kristiana ◽  
Ratna Dwi Christyanti

<p>Let  be a nontrivial and connected graph of vertex set  and edge set  . A bijection  is called a local edge antimagic labeling if for any two adjacent edges  and , where for . Thus, the local edge antimagic labeling induces a proper edge coloring of G if each edge e assigned the color  . The color of each an edge <em>e</em> = <em>uv</em> is assigned bywhich is defined by the sum of label both and vertices  and  . The local edge antimagic chromatic number, denoted by  is the minimum number of colors taken over all colorings induced by local edge antimagic labeling of   . In our paper, we present the local edge antimagic coloring of corona product of path and cycle, namely path corona cycle, cycle corona path, path corona path, cycle corona cycle.</p><p><strong>Keywords:</strong> Local antimagic; edge coloring; corona product; path; cycle.</p>


2018 ◽  
Vol 2 (1) ◽  
pp. 30 ◽  
Author(s):  
Nuris Hisan Nazula ◽  
S Slamin ◽  
D Dafik

The local antimagic labeling on a graph G with |V| vertices and |E| edges is defined to be an assignment f : E --&gt; {1, 2,..., |E|} so that the weights of any two adjacent vertices u and v are distinct, that is, w(u)̸  ̸= w(v) where w(u) = Σe∈<sub>E(u)</sub> f(e) and E(u) is the set of edges incident to u. Therefore, any local antimagic labeling induces a proper vertex coloring of G where the vertex u is assigned the color w(u). The local antimagic chromatic number, denoted by χla(G), is the minimum number of colors taken over all colorings induced by local antimagic labelings of G. In this paper, we present the local antimagic chromatic number of unicyclic graphs that is the graphs containing exactly one cycle such as kite and cycle with two neighbour pendants.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1230
Author(s):  
Martin Bača ◽  
Andrea Semaničová-Feňovčíková ◽  
Tao-Ming Wang

An edge labeling of a graph G=(V,E) using every label from the set {1,2,⋯,|E(G)|} exactly once is a local antimagic labeling if the vertex-weights are distinct for every pair of neighboring vertices, where a vertex-weight is the sum of labels of all edges incident with that vertex. Any local antimagic labeling induces a proper vertex coloring of G where the color of a vertex is its vertex-weight. This naturally leads to the concept of a local antimagic chromatic number. The local antimagic chromatic number is defined to be the minimum number of colors taken over all colorings of G induced by local antimagic labelings of G. In this paper, we estimate the bounds of the local antimagic chromatic number for disjoint union of multiple copies of a graph.


Author(s):  
Fairouz Beggas ◽  
Hamamache Kheddouci ◽  
Walid Marweni

In this paper, we introduce and study a new coloring problem of graphs called the double total dominator coloring. A double total dominator coloring of a graph [Formula: see text] with minimum degree at least 2 is a proper vertex coloring of [Formula: see text] such that each vertex has to dominate at least two color classes. The minimum number of colors among all double total dominator coloring of [Formula: see text] is called the double total dominator chromatic number, denoted by [Formula: see text]. Therefore, we establish the close relationship between the double total dominator chromatic number [Formula: see text] and the double total domination number [Formula: see text]. We prove the NP-completeness of the problem. We also examine the effects on [Formula: see text] when [Formula: see text] is modified by some operations. Finally, we discuss the [Formula: see text] number of square of trees by giving some bounds.


2021 ◽  
Vol 26 (4) ◽  
pp. 80
Author(s):  
Xue Yang ◽  
Hong Bian ◽  
Haizheng Yu ◽  
Dandan Liu

Let G=(V(G),E(G)) be a connected graph with n vertices and m edges. A bijection f:E(G)→{1,2,⋯,m} is an edge labeling of G. For any vertex x of G, we define ω(x)=∑e∈E(x)f(e) as the vertex label or weight of x, where E(x) is the set of edges incident to x, and f is called a local antimagic labeling of G, if ω(u)≠ω(v) for any two adjacent vertices u,v∈V(G). It is clear that any local antimagic labelling of G induces a proper vertex coloring of G by assigning the vertex label ω(x) to any vertex x of G. The local antimagic chromatic number of G, denoted by χla(G), is the minimum number of different vertex labels taken over all colorings induced by local antimagic labelings of G. In this paper, we present explicit local antimagic chromatic numbers of Fn∨K2¯ and Fn−v, where Fn is the friendship graph with n triangles and v is any vertex of Fn. Moreover, we explicitly construct an infinite class of connected graphs G such that χla(G)=χla(G∨K2¯), where G∨K2¯ is the join graph of G and the complement graph of complete graph K2. This fact leads to a counterexample to a theorem of Arumugam et al. in 2017, and our result also provides a partial solution to Problem 3.19 in Lau et al. in 2021.


Let G = (V, E) be a finite, connected, undirected with no loops, multiple edges graph. Then the power dominator coloring of G is a proper coloring of G, such that each vertex of G power dominates every vertex of some color class. The minimum number of color classes in a power dominator coloring of the graph, is the power dominator chromatic number . Here we study the power dominator chromatic number for some special graphs such as Bull Graph, Star Graph, Wheel Graph, Helm graph with the help of induction method and Fan Graph. Suitable examples are provided to exemplify the results.


10.37236/3303 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Jian Chang ◽  
Jian-Liang Wu ◽  
Hui-Juan Wang ◽  
Zhan-Hai Guo

The total chromatic number of a graph $G$, denoted by $\chi′′(G)$, is the minimum number of colors needed to color the vertices and edges of $G$ such that no two adjacent or incident elements get the same color. It is known that if a planar graph $G$ has maximum degree $\Delta ≥ 9$, then $\chi′′(G) = \Delta + 1$. The join $K_1 \vee P_n$ of $K_1$ and $P_n$ is called a fan graph $F_n$. In this paper, we prove that if $G$ is a $F_5$-free planar graph with maximum degree 8, then $\chi′′(G) = 9$.


2010 ◽  
Vol Vol. 12 no. 5 (Graph and Algorithms) ◽  
Author(s):  
Tınaz Ekim ◽  
Bernard Ries ◽  
Dominique De Werra

Graphs and Algorithms International audience The split-coloring problem is a generalized vertex coloring problem where we partition the vertices into a minimum number of split graphs. In this paper, we study some notions which are extensively studied for the usual vertex coloring and the cocoloring problem from the point of view of split-coloring, such as criticality and the uniqueness of the minimum split-coloring. We discuss some properties of split-critical and uniquely split-colorable graphs. We describe constructions of such graphs with some additional properties. We also study the effect of the addition and the removal of some edge sets on the value of the split-chromatic number. All these results are compared with their cochromatic counterparts. We conclude with several research directions on the topic.


Author(s):  
Arika Indah Kristiana ◽  
Nafidatun Nikmah ◽  
Dafik ◽  
Ridho Alfarisi ◽  
M. Ali Hasan ◽  
...  

Let [Formula: see text] be a simple, finite, undirected, and connected graph with vertex set [Formula: see text] and edge set [Formula: see text]. A bijection [Formula: see text] is label function [Formula: see text] if [Formula: see text] and for any two adjacent vertices [Formula: see text] and [Formula: see text], [Formula: see text] where [Formula: see text] and [Formula: see text] is set ofvertices adjacent to [Formula: see text]. [Formula: see text] is called local irregularity vertex coloring. The minimum cardinality of local irregularity vertex coloring of [Formula: see text] is called chromatic number local irregular denoted by [Formula: see text]. In this paper, we verify the exact values of volcano, broom, parachute, double broom and complete multipartite graphs.


2013 ◽  
Vol 2 (1) ◽  
pp. 23
Author(s):  
Yuli Erita

Let f be a proper k-coloring of a connected graph G and = (V) bean ordered partition of V (G) into the resulting color classes. For a vertex v of G, thecolor code of v with respect to is dened to be the ordered k-tuplec(v) = (d(v; V1); d(v; V2); :::; d(v; V));where d(v; Vi) = minfd(v; x)jx 2 Vikg, 1 i k: If distinct vertices have distinct colorcodes, then f is called a locating coloring. The minimum number of colors needed in alocating coloring of G is the locating chromatic number of G, and denoted by (G). Inthis paper, we study the locating chromatic number of the join of some graphs.


Sign in / Sign up

Export Citation Format

Share Document