scholarly journals Research on a prototype spark ignition (SI) variable compression ratio engine fitted with a pneumatic energy accumulator

2014 ◽  
Vol 159 (4) ◽  
pp. 54-65
Author(s):  
Przemysław ŁAZIŃSKI ◽  
Michał GŁOGOWSKI ◽  
Jacek LEYKO

The paper describes investigations performed on a prototype variable compression ratio engine fitted with a pneumatic energy accumulator. The engine was built in the Chair of Vehicles and Basics of Machine Design at Lodz University of Technology. Due to the design and principle of operation, the engine may be an alternative to the already existing VCR engines. The pneumatic energy accumulator fitted in the cylinder head with an additional moving piston allows continuous adjustment of the compression ratio. The system is adaptive and adjusts itself to the engine load, reducing the increment of maximum pressure inside the cylinder. The research focuses on the influence of adjustment parameters of the energy accumulator on the movement of the additional piston and engine performance. Engine operation stability and reproducibility of the cycles has also been investigated. An attempt was made to characterize the engine and the energy accumulator in terms of efficiency and range of applicability (profitability of application).

2019 ◽  
Vol 9 (21) ◽  
pp. 4484 ◽  
Author(s):  
Chen ◽  
Wang ◽  
Liu ◽  
Yang

Variable compression ratio (VCR) technology has long been recognized as a method for improving the engine performance, efficiency, and fuel economy of automobiles, with reduced emissions. In this paper, a novel hydraulic continuous VCR system based on the principle of an adjustable hydraulic volume is introduced. The continuous variable compression ratio of the VCR system is realized by the hydraulic system controlling the rotation of the eccentric pin to change the positions of the top dead center (TDC) and the bottom dead center (BDC). The construction of the mathematical model and simulation model of the VCR system is also presented in this paper. The piston motion characteristics, flow characteristics, and pressure characteristics of the hydraulic system of the VCR system at different engine speeds and adjustment quantities are studied by simulation in this paper. The simulation results show that the VCR system has a fast response and good dynamic characteristics, and can achieve continuous adjustment of the compression ratio.


Author(s):  
K.Satya narayana ◽  
◽  
Vinodh Kumar Padala ◽  
T.V.Hanumantha Rao ◽  
S.V.Umamahe swararao

Author(s):  
S. G. Timoney

Continued development work at University College, Dublin, on the variable compression ratio, two-stroke diesel engine, discussed in earlier communications to the Institution, has demonstrated the ability of this unique design to combine long service life with high specific output. The present paper summarizes the current status of the programme after four years' work. The basic design philosophy adopts a two-stroke cycle and exhaust gas turbocharging to obtain high specific output, and an automatic variable compression ratio mechanism to ensure long service life by controlling piston loads. The paper gives details of the variable compression ratio mechanism including the specification of the various components of which it is comprised. Test results show the response rate of the mechanism relative to changes in engine operation. Results are also given for the engine as operated with various air supply blowers to give characteristics suitable for specific user applications.


Author(s):  
T J Rychter ◽  
A Teodorczyk ◽  
C R Stone ◽  
H J Leonard ◽  
N Ladommatos ◽  
...  

A variable compression ratio concept that can give a different expansion ratio to the compression ratio has been evaluated by means of a simulation of a turbocharged diesel engine. The compression ratio is controlled by varying the ratio of the connecting rod length to the crank throw, hence the name variable crank radius/connecting rod length engine (VR/LE). The VR/LE mechanism kinematics have been defined and described, and the compression ratio and expansion ratio have been presented as a function of the eccentric phase angle (αo). A zero-dimensional engine simulation that has been the subject of comprehensive validation has been used as the basis of the VR/LE study. The effect of the compression ratio on the engine performance at fixed loads is presented. The principal benefits are a reduction in fuel consumption at part load of about 2 per cent and a reduction in ignition delay that leads to an estimated 6 dB reduction in combustion noise. The study has been conducted within the assumption of a maximum cylinder pressure of 160 bar.


Sign in / Sign up

Export Citation Format

Share Document