scholarly journals Emissions of reactive nitrogen compounds (RNCs) from two vehicles with turbo-charged spark ignition engines over cold start driving cycles

2021 ◽  
Author(s):  
Joseph Woodburn

This paper reviews the emissions of reactive nitrogen compounds (RNCs) from modern vehicles fitted with spark ignition en-gines and three-way catalysts. Specific aspects of the pollutants involved – and their formation – are discussed. Cold start driving cycles are scenarios under which emissions of all four RNCs can be significant; the mechanisms behind emissions trends are ex-plored. Experimental data obtained from two vehicles tested over two different cold start driving cycles are presented and analysed. The use of gravimetric and molar metrics are explored. Ammonia, a species which is currently not regulated for passenger cars in any automotive market, is identified as forming the majority of the RNC emissions over the entire driving cycle. While ammonia emissions are strongly linked to aftertreatment system warmup and periods of high load, significant ammonia emissions were also measured under certain hot-running, low load conditions, and even at idle. For the majority of the duration of the test procedures employed, the RNC profile was dominated by ammonia, which accounted for between 69% and 86% of measured RNCs in the ex-haust gas. Emissions are compared to the available legislative precedents (i.e. emissions limits currently in force in various jurisdic-tions). Finally, possibilities for control of exhaust emissions of currently unregulated RNCs are briefly discussed.

2018 ◽  
Vol 121 ◽  
pp. 41-55
Author(s):  
Jacek Gaj ◽  
Zbigniew Lozia

According to the title, the article compares passenger cars produced in versions with SIE engines (spark ignition engines) and CIE engines (compression ignition engines), taking into account the situation on the Polish automotive market. A group of 25 selected vehicle pairs equipped with the SIE and CIE engine versions has been presented. The measurable comparative criteria have been defined. The results of the comparison were presented in the form of graphs with a commentary. The situation on the Polish automotive market was also assessed in the context of a comparison of both types of vehicles. The final conclusions close the article.


2020 ◽  
Vol 183 (4) ◽  
pp. 11-14
Author(s):  
Małgorzata Mrozik

The aim of the article is to present the environmental effects of changes in material composition in selected internal combustion engines used in passenger cars using LCA analysis. The levels of energy consumption and emissions of pollutants related to material inputs occurring at the stage of engine production have been determined. The simplified LCA model presented in the paper shows the energy consumption and total CO2 and SO2 emissions on the basis of the mass of materials from which the engine is made. The research results presented in the paper give a picture of a modern passenger car engine on the basis of wear and the degree of recovery of materials used for its construction.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (5) ◽  
pp. 340-347
Author(s):  
Zbigniew Stępień ◽  

The article describes the threat posed by deposits harmful to the proper functioning of spark ignition engines. The areas of indirect and direct injection engines where the most dangerous deposits form are indicated. The factors having significant influence on the occurrence of this unfavourable phenomenon were collected and analyzed. Consequently, a simplified classification of factors influencing the formation of harmful deposits in direct and indirect injection spark ignition engines was made. In the research part of the project, a comparative study of the tendency of gasolines of different composition and physicochemical properties to form deposits was carried out. The criterion for evaluating the detergent properties of gasolines was the tendency to form deposits on intake valves in the case of indirect injection engine and on the injector in the case of direct injection engine. For this purpose, the previously widely used test procedure CEC F-05-93 relating to deposits formed on intake valves in SI indirect injection engines and the latest test procedure CEC F-113-KC relating to the most harmful deposits formed in injectors of DISI (Direct Injection Spark Ignition) engines were used. The purpose of the comparative study conducted was to determine if there was any relatively simple, identifiable relationship between the results of gasoline detergent property evaluations obtained at engine test sites differing in test engine generations, methods of conducting the evaluations, and type of engine deposits formed. As a result, no correlations were found between the testable engine sludge tendency results obtained from tests using the CEC F-05-93 and CEC F-113-KC procedures. Therefore, knowing the evaluation of gasoline conducted according to one of the above mentioned test procedures, one cannot conclude, predict or estimate the evaluation that will be obtained according to the other test procedure. Therefore, the results obtained according to one of the procedures do not allow extrapolation and evaluation of gasoline in terms of tendency to form harmful engine deposits according to the other procedure.


2014 ◽  
Vol 18 (1) ◽  
pp. 179-191 ◽  
Author(s):  
Raja Samuel ◽  
Arasu Valan

The cold start hydrocarbon emission from the increasing population of two wheelers in countries like India is one of the research issues to be addressed. This work describes the prediction of cold start hydrocarbon emissions from air cooled spark ignition engines through fuzzy logic technique. Hydrocarbon emissions were experimentally measured from test engines of different cubic capacity, at different lubricating oil temperature and at different idling speeds with and without secondary air supply in exhaust. The experimental data were used as input for modeling average hydrocarbon emissions for 180 seconds counted from cold start and warm start of gasoline bike engines. In fuzzy logic simulation, member functions were assigned for input variables (cubic capacity and idling rpm) and output variables (average hydrocarbon emission for first 180 seconds at cold start and warm start). The knowledge based rules were adopted from the analyzed experimental data and separate simulations were carried out for predicting hydrocarbon emissions from engines equipped with and without secondary air supply. The simulation yielded the average hydrocarbon emissions of air cooled gasoline engine for a set of given input data with accuracy over 90%.


2011 ◽  
Vol 44 (1) ◽  
pp. 13022-13027 ◽  
Author(s):  
Farzad Keynejad ◽  
Chris Manzie

Sign in / Sign up

Export Citation Format

Share Document