STABILITY OF ONE-PARAMETER SYSTEMS OF LINEAR AUTONOMOUS DIFFERENTIAL EQUATIONS WITH BOUNDED DELAY

Author(s):  
Mikhail Vadimovich Mulyukov

We consider a system of linear autonomous differential equations with bounded delay in the case when its characteristic function depends linearly on one scalar parameter. The application of the D-subdivision method to the problem of constructing the stability region for this equation was developed.

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
H. Saberi Najafi ◽  
A. Refahi Sheikhani ◽  
A. Ansari

We analyze the stability of three classes of distributed order fractional differential equations (DOFDEs) with respect to the nonnegative density function. In this sense, we discover a robust stability condition for these systems based on characteristic function and new inertia concept of a matrix with respect to the density function. Moreover, we check the stability of a distributed order fractional WINDMI system to illustrate the validity of proposed procedure.


2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Z. H. Wang

The stability of a delay differential equation can be investigated on the basis of the root location of the characteristic function. Though a number of stability criteria are available, they usually do not provide any information about the characteristic root with maximal real part, which is useful in justifying the stability and in understanding the system performances. Because the characteristic function is a transcendental function that has an infinite number of roots with no closed form, the roots can be found out numerically only. While some iterative methods work effectively in finding a root of a nonlinear equation for a properly chosen initial guess, they do not work in finding the rightmost root directly from the characteristic function. On the basis of Lambert W function, this paper presents an effective iterative algorithm for the calculation of the rightmost roots of neutral delay differential equations so that the stability of the delay equations can be determined directly, illustrated with two examples.


2017 ◽  
Vol 79 (5) ◽  
Author(s):  
Mohd Rashid Admon ◽  
Normah Maan

This is a mathematical study about tumor growth from a different perspective, with the aim of predicting and/or controlling the disease. The focus is on the effect and interaction of tumor cell with immune and drug. This paper presents a mathematical model of immune response and a cycle phase specific drug using a system of ordinary differential equations.  Stability analysis is used to produce stability regions for various values of certain parameters during mitosis. The stability region of the graph shows that the curve splits the tumor decay and growth regions in the absence of immune response. However, when immune response is present, the tumor growth region is decreased. When drugs are considered in the system, the stability region remains unchanged as the system with the presence of immune response but the population of tumor cells at interphase and metaphase is reduced with percentage differences of 1.27 and 1.53 respectively. The combination of immunity and drug to fight cancer provides a better method to reduce tumor population compared to immunity alone.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 806
Author(s):  
Ali Shokri ◽  
Beny Neta ◽  
Mohammad Mehdizadeh Khalsaraei ◽  
Mohammad Mehdi Rashidi ◽  
Hamid Mohammad-Sedighi

In this paper, a symmetric eight-step predictor method (explicit) of 10th order is presented for the numerical integration of IVPs of second-order ordinary differential equations. This scheme has variable coefficients and can be used as a predictor stage for other implicit schemes. First, we showed the singular P-stability property of the new method, both algebraically and by plotting the stability region. Then, having applied it to well-known problems like Mathieu equation, we showed the advantage of the proposed method in terms of efficiency and consistency over other methods with the same order.


2020 ◽  
Vol 51 (2) ◽  
pp. 123-136
Author(s):  
Iskandar Shah Mohd Zawawi

In this paper, the block backward differentiation α formulas (BBDF-α) is derived for solving first order stiff ordinary differential equations with oscillating solutions. The consistency and zero stability conditions are investigated to prove the convergence of the method. The stability region in the entire negative half plane shows that the derived method is A-stable for certain values of α. The implementation of the method using Newton iteration is also discussed. Several numerical experiments are conducted to demonstrate the performance of the method in terms of accuracy and computational time.


2017 ◽  
Vol 13 (2) ◽  
pp. 55-62
Author(s):  
M. Neštický ◽  
O. Palumbíny ◽  
G. Michalčonok

Abstract The paper presents two different approaches to estimating the region of stability of differential equation. Estimation of the region of stability is an essential practice in relation to control of the dynamical system. In this paper the objects of examination are differential equations with quasi-derivation. The equations have features that do not allow the application of classical methods for establishing stability. The goal is to compare the results of an analytic approach using Lyapunov method and computer simulation using a numerical method. The brief description of both methods are introduced and graphical results are presented and compared


Sign in / Sign up

Export Citation Format

Share Document