MODELLING TUMOR GROWTH WITH IMMUNE RESPONSE AND DRUG USING ORDINARY DIFFERENTIAL EQUATIONS

2017 ◽  
Vol 79 (5) ◽  
Author(s):  
Mohd Rashid Admon ◽  
Normah Maan

This is a mathematical study about tumor growth from a different perspective, with the aim of predicting and/or controlling the disease. The focus is on the effect and interaction of tumor cell with immune and drug. This paper presents a mathematical model of immune response and a cycle phase specific drug using a system of ordinary differential equations.  Stability analysis is used to produce stability regions for various values of certain parameters during mitosis. The stability region of the graph shows that the curve splits the tumor decay and growth regions in the absence of immune response. However, when immune response is present, the tumor growth region is decreased. When drugs are considered in the system, the stability region remains unchanged as the system with the presence of immune response but the population of tumor cells at interphase and metaphase is reduced with percentage differences of 1.27 and 1.53 respectively. The combination of immunity and drug to fight cancer provides a better method to reduce tumor population compared to immunity alone.

2016 ◽  
Author(s):  
Kathleen P. Wilkie ◽  
Philip Hahnfeldt ◽  
Lynn Hlatky

AbstractCancer is not solely a disease of the genome, but is a systemic disease that affects the host on many functional levels, including, and perhaps most notably, the function of the immune response, resulting in both tumor-promoting inflammation and tumor-inhibiting cytotoxic action. The dichotomous actions of the immune response induce significant variations in tumor growth dynamics that mathematical modeling can help to understand. Here we present a general method using ordinary differential equations (ODEs) to model and analyze cancer-immune interactions, and in particular, immune-induced tumor dormancy.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 806
Author(s):  
Ali Shokri ◽  
Beny Neta ◽  
Mohammad Mehdizadeh Khalsaraei ◽  
Mohammad Mehdi Rashidi ◽  
Hamid Mohammad-Sedighi

In this paper, a symmetric eight-step predictor method (explicit) of 10th order is presented for the numerical integration of IVPs of second-order ordinary differential equations. This scheme has variable coefficients and can be used as a predictor stage for other implicit schemes. First, we showed the singular P-stability property of the new method, both algebraically and by plotting the stability region. Then, having applied it to well-known problems like Mathieu equation, we showed the advantage of the proposed method in terms of efficiency and consistency over other methods with the same order.


2020 ◽  
Vol 51 (2) ◽  
pp. 123-136
Author(s):  
Iskandar Shah Mohd Zawawi

In this paper, the block backward differentiation α formulas (BBDF-α) is derived for solving first order stiff ordinary differential equations with oscillating solutions. The consistency and zero stability conditions are investigated to prove the convergence of the method. The stability region in the entire negative half plane shows that the derived method is A-stable for certain values of α. The implementation of the method using Newton iteration is also discussed. Several numerical experiments are conducted to demonstrate the performance of the method in terms of accuracy and computational time.


2019 ◽  
Vol 11 (2) ◽  
pp. 190
Author(s):  
Séka Hippolyte ◽  
Assui Kouassi Richard

In this article, a new family of Runge-Kutta methods of 8^th order for solving ordinary differential equations is discovered and depends on the parameters b_8 and a_10;5. For b8 = 49/180 and a10;5 = 1/9, we find the Cooper-Verner method [1]. We show that the stability region depends only on coefficient a_10;5. We compare the stability regions according to the values of a_10;5 with respect to the stability region of Cooper-Verner.


2020 ◽  
Vol 13 (06) ◽  
pp. 2050051
Author(s):  
Zhinan Xia ◽  
Qianlian Wu ◽  
Dingjiang Wang

In this paper, we establish some criteria for the stability of trivial solution of population growth models with impulsive perturbations. The working tools are based on the theory of generalized ordinary differential equations. Here, the conditions concerning the functions are more general than the classical ones.


1968 ◽  
Vol 20 ◽  
pp. 720-726
Author(s):  
T. G. Hallam ◽  
V. Komkov

The stability of the solutions of an ordinary differential equation will be discussed here. The purpose of this note is to compare the stability results which are valid with respect to a compact set and the stability results valid with respect to an unbounded set. The stability of sets is a generalization of stability in the sense of Liapunov and has been discussed by LaSalle (5; 6), LaSalle and Lefschetz (7, p. 58), and Yoshizawa (8; 9; 10).


1972 ◽  
Vol 47 ◽  
pp. 111-144 ◽  
Author(s):  
Yoshio Miyahara

The stability of the systems given by ordinary differential equations or functional-differential equations has been studied by many mathematicians. The most powerful tool in this field seems to be the Liapunov’s second method (see, for example [6]).


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lee Ken Yap ◽  
Fudziah Ismail ◽  
Norazak Senu

The block hybrid collocation method with two off-step points is proposed for the direct solution of general third order ordinary differential equations. Both the main and additional methods are derived via interpolation and collocation of the basic polynomial. These methods are applied in block form to provide the approximation at five points concurrently. The stability properties of the block method are investigated. Some numerical examples are tested to illustrate the efficiency of the method. The block hybrid collocation method is also implemented to solve the nonlinear Genesio equation and the problem in thin film flow.


Sign in / Sign up

Export Citation Format

Share Document