Self-Organizing Map Application for Iris Recognition

2014 ◽  
Vol 3 (2) ◽  
pp. 10
Author(s):  
Anna Sedrak Hovakimyan ◽  
Siranush Gegham Sargsyan ◽  
Arshak Nazaryan

Human iris is  a good subject of biometrical identification, since  iris patterns are unique like fingerprints. Iris is well protected against damage, unlike fingerprints, which can be harder to recognize after years of certain types of manual labor.A problem of iris recognition is considered in the paper. In machine learning, pattern recognition is the assignment of a label to a given input value. Pattern classification is an example of pattern recognition: it attempts to assign each input value to one of a given set of classes. Nowadays various techniques are used for this purpose, and in particular artificial neural networks.For iris recognition problem solving  Kohenen Self Organizing Maps are suggested to use. The software for iris recognition is developed  which is customizable and allows to select the appropriate parameters of the neural network to obtain the most satisfactory results. The developed Self-Organizing Map Library of classes can be used for various kinds of object classification problem solving as well as for any problems suitable to solve with Self-Organizing Maps.

2008 ◽  
Vol 18 (03) ◽  
pp. 233-256 ◽  
Author(s):  
ALIREZA FATEHI ◽  
KENICHI ABE

The MMSOM identification method, which had been presented by the authors, is improved to the multiple modeling by the irregular self-organizing map (MMISOM) using the irregular SOM (ISOM). Inputs to the neural networks are parameters of the instantaneous model computed adaptively at every instant. The neural network learns these models. The reference vectors of its output nodes are estimation of the parameters of the local models. At every instant, the model with closest output to the plant output is selected as the model of the plant. ISOM used in this paper is a graph of all the nodes and some of the weighted links between them to make a minimum spanning tree graph. It is shown in this paper that it is possible to add new models if the number of models is initially less than the appropriate one. The MMISOM shows more flexibility to cover the linear model space of the plant when the space is concave.


2021 ◽  
Vol 14 (4) ◽  
pp. 33-44
Author(s):  
G. Chamundeswari ◽  
G. P. S. Varma ◽  
C. Satyanarayana

Clustering techniques are used widely in computer vision and pattern recognition. The clustering techniques are found to be efficient with the feature vector of the input image. So, the present paper uses an approach for evaluating the feature vector by using Hough transformation. With the Hough transformation, the present paper mapped the points to line segment. The line features are considered as the feature vector and are given to the neural network for performing clustering. The present paper uses self-organizing map (SOM) neural network for performing the clustering process. The proposed method is evaluated with various leaf images, and the evaluated performance measures show the efficiency of the proposed method.


2008 ◽  
Vol 18 (04) ◽  
pp. 347-370 ◽  
Author(s):  
ALIREZA FATEHI ◽  
KENICHI ABE

The MMSOM identification method, which had been presented by the authors, is improved to the multiple modeling by the irregular self-organizing map (MMISOM) using the irregular SOM (ISOM). Inputs to the neural networks are parameters of the instantaneous model computed adaptively at every instant. The neural network learns these models. The reference vectors of its output nodes are estimation of the parameters of the local models. At every instant, the model with closest output to the plant output is selected as the model of the plant. ISOM used in this paper is a graph of all the nodes and some of the weighted links between them to make a minimum spanning tree graph. It is shown in this paper that it is possible to add new models if the number of models is initially less than the appropriate one. The MMISOM shows more flexibility to cover the linear model space of the plant when the space is concave.


Author(s):  
Sylvain Barthelemy ◽  
Pascal Devaux ◽  
Francois Faure ◽  
Matthieu Pautonnier

Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 235
Author(s):  
Diego Galvan ◽  
Luciane Effting ◽  
Hágata Cremasco ◽  
Carlos Adam Conte-Junior

Background and objective: In the current pandemic scenario, data mining tools are fundamental to evaluate the measures adopted to contain the spread of COVID-19. In this study, unsupervised neural networks of the Self-Organizing Maps (SOM) type were used to assess the spatial and temporal spread of COVID-19 in Brazil, according to the number of cases and deaths in regions, states, and cities. Materials and methods: The SOM applied in this context does not evaluate which measures applied have helped contain the spread of the disease, but these datasets represent the repercussions of the country’s measures, which were implemented to contain the virus’ spread. Results: This approach demonstrated that the spread of the disease in Brazil does not have a standard behavior, changing according to the region, state, or city. The analyses showed that cities and states in the north and northeast regions of the country were the most affected by the disease, with the highest number of cases and deaths registered per 100,000 inhabitants. Conclusions: The SOM clustering was able to spatially group cities, states, and regions according to their coronavirus cases, with similar behavior. Thus, it is possible to benefit from the use of similar strategies to deal with the virus’ spread in these cities, states, and regions.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Adeoluwa Akande ◽  
Ana Cristina Costa ◽  
Jorge Mateu ◽  
Roberto Henriques

The explosion of data in the information age has provided an opportunity to explore the possibility of characterizing the climate patterns using data mining techniques. Nigeria has a unique tropical climate with two precipitation regimes: low precipitation in the north leading to aridity and desertification and high precipitation in parts of the southwest and southeast leading to large scale flooding. In this research, four indices have been used to characterize the intensity, frequency, and amount of rainfall over Nigeria. A type of Artificial Neural Network called the self-organizing map has been used to reduce the multiplicity of dimensions and produce four unique zones characterizing extreme precipitation conditions in Nigeria. This approach allowed for the assessment of spatial and temporal patterns in extreme precipitation in the last three decades. Precipitation properties in each cluster are discussed. The cluster closest to the Atlantic has high values of precipitation intensity, frequency, and duration, whereas the cluster closest to the Sahara Desert has low values. A significant increasing trend has been observed in the frequency of rainy days at the center of the northern region of Nigeria.


2021 ◽  
Vol 11 (4) ◽  
pp. 1933
Author(s):  
Hiroomi Hikawa ◽  
Yuta Ichikawa ◽  
Hidetaka Ito ◽  
Yutaka Maeda

In this paper, a real-time dynamic hand gesture recognition system with gesture spotting function is proposed. In the proposed system, input video frames are converted to feature vectors, and they are used to form a posture sequence vector that represents the input gesture. Then, gesture identification and gesture spotting are carried out in the self-organizing map (SOM)-Hebb classifier. The gesture spotting function detects the end of the gesture by using the vector distance between the posture sequence vector and the winner neuron’s weight vector. The proposed gesture recognition method was tested by simulation and real-time gesture recognition experiment. Results revealed that the system could recognize nine types of gesture with an accuracy of 96.6%, and it successfully outputted the recognition result at the end of gesture using the spotting result.


Author(s):  
Macario O. Cordel ◽  
Arnulfo P. Azcarraga

Several time-critical problems relying on large amount of data, e.g., business trends, disaster response and disease outbreak, require cost-effective, timely and accurate data summary and visualization, in order to come up with an efficient and effective decision. Self-organizing map (SOM) is a very effective data clustering and visualization tool as it provides intuitive display of data in lower-dimensional space. However, with [Formula: see text] complexity, SOM becomes inappropriate for large datasets. In this paper, we propose a force-directed visualization method that emulates SOMs capability to display the data clusters with [Formula: see text] complexity. The main idea is to perform a force-directed fine-tuning of the 2D representation of data. To demonstrate the efficiency and the vast potential of the proposed method as a fast visualization tool, the methodology is used to do a 2D-projection of the MNIST handwritten digits dataset.


2019 ◽  
Vol 1 (1) ◽  
pp. 194-202
Author(s):  
Adrian Costea

Abstract This paper assesses the financial performance of Romania’s non-banking financial institutions (NFIs) using a neural network training algorithm proposed by Kohonen, namely the Self-Organizing Maps algorithm. The algorithm takes the financial dataset and positiones each observation into a self-organizing map (a two-dimensional map) which can be latter used to visualize the trajectories of an individual NFI and explain it based on different performance dimensions, such as capital adequacy, assets’ quality and profitability. Further, we use the map as an early-warning system that would accurately forecast the NFIs future performance (whether they would stay or be eliminated from the NFI’s Special Register three quarters into the future). The results are promising: the model is able to correctly predict NFIs’ performance movements. Finally, we compared the results of our SOM-based model with those obtained by applying a multivariate logit-based model. The SOM model performed worse in discriminating the NFIs’ performance: the performance classes were not clearly defined and the model lacked the interpretability of the results. In the contrary, the multivariate logit coefficients have nice interpretability and an individual default probability estimate is obtained for each new observation. However, we can benefit from the results of both techniques: the visualization capabilities of the SOM model and the interpretability of multivariate logit-based model.


Sign in / Sign up

Export Citation Format

Share Document