scholarly journals Growth, Seed Yield, Protein Content and Water Use Efficiency of Fenugreek (Trigonellafoenum – graceum L.) as Influenced by Drip Irrigation Regimes and Fertigation Levels

Author(s):  
Komal Kanwar ◽  
C.B. Harisha ◽  
Ravindra Singh ◽  
Aadit yendra
Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1711
Author(s):  
Moti Lal Mehriya ◽  
Neelam Geat ◽  
Sarita ◽  
Hari Singh ◽  
Mohamed A. Mattar ◽  
...  

A three-year field experiment was conducted at the Agricultural Research Station of Mandor, Jodhpur, Rajasthan, under arid climatic conditions in the rabi season of 2016–2019 with the objectives of evaluating the effect of drip irrigation and fertigation levels on cumin plant growth, yield, oil content, water-use efficiency, and water productivity. The pooled data revealed that the drip irrigation at 0.6 cumulative pan evaporation (CPE) recorded significantly higher plant height (31.4 cm), umbels plant−1 (50.4), umbellates umbel−1 (5.07), seeds umbel−1 (5.34), test weight (4.60 g), seed yield (1063 kg ha−1), gross return (₹ 172,600 ha−1), net return (₹ 113,500 ha−1) and benefit, and cost ratio (2.9) over drip fertigation at 0.4 CPE and surface irrigation with 0.8 CPE. The fertigation with 80% recommended dose of fertilizer (RDF) being at par with 100% RDF recorded a significantly higher number of umbels plant−1 (50.0), umbellates umbel−1 (5.03), seeds umbellate−1 (5.24), test weight (4.67 g), seed yield (1052 kg ha−1), gross return (₹ 170,900 ha−1), net return (₹ 111,700 ha−1), and benefit cost ratio (2.9) over fertigation with 60% RDF and control. Maximum water-use efficiency (5.7 kg ha−1 mm−1) and water saving (39.04%) was observed under drip irrigation at 0.4 CPE followed by 0.6 CPE (4.8 kg ha−1 mm−1 and 18.86%, respectively).


Author(s):  
G.D. Gadade ◽  
D.N. Gokhale ◽  
A.S. Kadale

Background: Pigeonpea an indeterminate pulse crop with profuse branching responds well to both irrigation and fertilizer. Erratic rainfall distribution pattern exposes this crop to dry spell during its vegetative stage and terminal drought at reproductive stage and the poor crop nutrition further results in to low yield. Under such circumstances it is very difficult to sustain the yield of pigeonpea. Agronomic practices like precise and timely application of drip irrigation along with judicious use of nutrients play a vital role to boost the yield of any crop. Thus the attempts were made to explore the yield potential of pigeonpea under drip irrigation and fertigation management. Methods: The present study was conducted at the experimental farm of AICRP on Irrigation Water Management, VNMKV, Parbhani (MS) during kharif 2018 and 2019. The experiment was laid out in split plot design with main plots comprising of four drip irrigation levels viz. 0.6, 0.8, 1.0 ETc (crop evapotranspiration) and conventional method and sub plots were allotted to four fertigation levels viz. control (no fertilizer), 80% RDF, 100% RDF (25: 50: 25 NPK kg ha-1) and 120% RDF. Result: Drip irrigation at 0.8 ETc recorded higher seed yield, harvest index, water use efficiency, nutrient use efficiency and net returns of pigeonpea followed by 1.0 ETc except in case of water use efficiency. As regards to fertigation studies, higher values of seed yield, harvest index and water use efficiency were recorded with drip fertigation @ 25:50:25 NPK kg ha-1 closely followed by 20:40:20 NPK kg ha-1. However higher nutrient use efficiency and net returns were obtained in drip fertigation @ 20:40:20 NPK kg ha-1.


2013 ◽  
Vol 39 (9) ◽  
pp. 1687 ◽  
Author(s):  
Zi-Jin NIE ◽  
Yuan-Quan CHEN ◽  
Jian-Sheng ZHANG ◽  
Jiang-Tao SHI ◽  
Chao LI ◽  
...  

2017 ◽  
Vol 43 (6) ◽  
pp. 899 ◽  
Author(s):  
Ming HUANG ◽  
Zhao-Hui WANG ◽  
Lai-Chao LUO ◽  
Sen WANG ◽  
Ming BAO ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fuqiang Li ◽  
Haoliang Deng ◽  
Yucai Wang ◽  
Xuan Li ◽  
Xietian Chen ◽  
...  

AbstractThe effects of the amount and timing of regulated deficit drip irrigation under plastic film on potato (‘Qingshu 168’) growth, photosynthesis, yield, water use efficiency, and quality were examined from 2017 to 2019 in cold and arid northwestern China. In the four stages of potato growth (seedling, tuber initiation, tuber bulking, starch accumulation), eight treatments were designed, with a mild deficit was in treatments WD1 (seedling), WD2 (tuber initiation), WD3 (tuber bulking), and WD4 (starch accumulation); and a moderate deficit in WD5 (seedling), WD6 (tuber initiation), WD7 (tuber bulking), and WD8 (starch accumulation). The net photosynthetic rate, stomatal conductance, and transpiration rate decreased significantly under water deficit in the tuber formation and starch accumulation stages. Although water deficit reduced potato yields, a mild deficit in the seedling stage resulted in the highest yield and water use efficiency at 43,961.91 kg ha−1 and 8.67 kg m−3, respectively. The highest overall quality was in potatoes subjected to mild and moderate water deficit in the seedling stage. Principal component analysis identified mild water stress in the seedling stage as the optimum regulated deficit irrigation regime. The results of this study provide theoretical and technical references for efficient water-saving cultivation and industrialization of potato in northwestern China.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 466
Author(s):  
Qibo Tao ◽  
Mengjie Bai ◽  
Cunzhi Jia ◽  
Yunhua Han ◽  
Yanrong Wang

Irrigation and nitrogen (N) are two crucial factors affecting perennial grass seed production. To investigate the effects of irrigation and N rate on seed yield (SY), yield components, and water use efficiency (WUE) of Cleistogenes songorica (Roshevitz) Ohwi, an ecologically significant perennial grass, a four-year (2016–2019) field trial was conducted in an arid region of northwestern China. Two irrigation regimes (I1 treatment: irrigation at tillering stage; I2 treatment: irrigation at tillering, spikelet initiation, and early flowering stages) and four N rates (0, 60, 120, 180 kg ha−1) were arranged. Increasing amounts of both irrigation and N improved SY, evapotranspiration, WUE, and related yield components like fertile tillers m−2 (FTSM) and seeds spikelet−1. Meanwhile, no significant difference was observed between 120 and 180 kg N ha−1 treatments for most variables. The highest SY and WUE was obtained with treatment combination of I2 plus 120 kg N ha−1 with four-year average values of 507.3 kg ha−1 and 1.8 kg ha−1 mm−1, respectively. Path coefficient and contribution analysis indicated that FTSM was the most important yield component for SY, with direct path coefficient and contribution coefficient of 0.626 and 0.592. Overall, we recommend I2 treatment (three irrigations) together with 120 kg N ha−1 to both increase SY and WUE, especially in arid regions. Future agronomic managements and breeding programs for seed should mainly focus on FTSM. This study will enable grass seed producers, plant breeders, and government program directors to more effectively target higher SY of C. songorica.


Sign in / Sign up

Export Citation Format

Share Document