scholarly journals Assessment of Soil Health and Soil Quality of Kandhamal District, Odisha

Author(s):  
Sushri Shainee Singh ◽  
Narendra Swaroop ◽  
Tarence Thomas
Keyword(s):  
2020 ◽  
Vol 12 (2) ◽  
pp. 387-398
Author(s):  
Sylvia O. OGOANAH ◽  
Uzoamaka N. NGWOKE ◽  
Edokpolor O. OHANMU ◽  
Pascal C. OKOYE ◽  
Beckley IKHAJIAGBE

The study investigated the enhancement of soil quality of an oil-polluted ultisol using livestock wastes. Top soil (0 - 10 cm) was obtained as a pooled sample and polluted with spent lubricating oil at 10% w/w. The soil was subsequently amended with sun-dried goat (GT), rabbit (RB), and poultry (PG) dung at 10% w/w on dry weight basis both in singles, double-mixed, and triple-mixed combinations. Twelve weeks after treatment application, results showed that there was a 93.9% decrease (p<0.05) in bacterial colony count in the oil-polluted soil compared to the control. Penicillium notatum and Aspergillus niger as well as Bacillus sp. and Proteus sp. were the prominent fungal and bacterial species identified respectively. The most abundant plant in the soil seed bank was Panicum maximum with 10.4% abundance and this showed possible involvement of the plant in remediation of oil-pollution. The total hydrocarbon content of the oil-polluted soil was 9984.0 mg/kg, compared to 3170.6 mg/kg when amended with RB+GT, implying 76.77% remediation efficiency. Among several trials employed in this study, the combination of rabbit and goat wastes proved to be more effective in reducing the total hydrocarbon content of oil-polluted soil and therefore, is recommended as a potential candidate for application in the bioremediation of such soil.


PLoS ONE ◽  
2010 ◽  
Vol 5 (9) ◽  
pp. e12346 ◽  
Author(s):  
John P. Reganold ◽  
Preston K. Andrews ◽  
Jennifer R. Reeve ◽  
Lynne Carpenter-Boggs ◽  
Christopher W. Schadt ◽  
...  
Keyword(s):  

2020 ◽  
Vol 42 (10) ◽  
pp. 482-492
Author(s):  
Keong-Hyeon An ◽  
Songhee Kim ◽  
Seung-Woo Jeong

Objectives : Changes in soil properties after washing of metal-contaminated soil near the former Janghang Smelter were investigated in this study. Contaminated input soils and remediated output soils were sampled from three different soil washing plants and analyzed for soil physical and chemical properties. Soil quality was evaluated by the soil fertilization guideline suggested by the Korea Rural Development Administration (KRDA). This study revealed the necessity of soil quality management for the remediated soil as an ecosystem member.Methods : Three soil washing plants (1OU, 2OU, 3OU) were commonly divided into the five steps: 1) the particle separation (crushing and grinding etc.) → 2) soil particle classification (big stone, fine soil, minimal fine soil) → 3) chemical washing (fine soil) → 4) neutralization of washed soil (lime) → 5) return-back to the original position. The separating minimum particle diameters of the 1OU, 2OU, and 3OU washing processes were 5 µm, 20 µm, and 10 µm, respectively, and the chemical washing solutions used were respectively 0.1 M H2SO4, 0.5 M H2SO4/0.5 M H3PO4, and 0.1 N NaOH-Na2CO3 (alkali reduction). Soils were collected before and after washing, air-dried, sieved with < 2 mm and analyzed for soil texture, bulk density, aggregate stability (AS), water holding capacity (WHC), pH, electrical conductivity (EC), organic matter content (OM), total nitrogen (TN), available phosphate (AvP), cation exchange capacity (CEC), exchangeable cations (potassium, calcium, magnesium, sodium).Results and Discussion : Sandy soil showed a big change in soil texture before and after soil washing, while there was no change in soil texture for fine soil. Sandy soil showed an increase in bulk density, a decrease in WHC, and a decrease in AS. The pH of remediated soil was affected by the type of washing chemical. The acidic washing processes (1OU, 2OU) resulted in low pH soils, while an alkali reduction process (3OU) showed high pH soil. The soil OM, TN, AvP and CEC decreased after soil washing. In the case of silty paddy soil, OM and TN were significantly reduced by washing. The most important change in soil property after washing was EC. After soil washing, the soil electrical conductivity increased sharply in all OUs : 1OU 0.51 → 6.21 ds/m, 2OU 1.09 → 3.73 ds/m, 3OU 0.99 → 9.30 ds/m. The EC values of the contaminated soil before washing were all less than 2 ds/m, which is an appropriate agricultural level. However, EC was significantly increased after washing, implying a strong salty soil level. The soil quality evaluation results before and after washing showed that the soil quality of heavy-metal contaminated soil was apparently degraded by washing. The number of soil property in the optimal range before washing (contaminated soil) was 10, but the number decreased to 5 after washing (remediated soil).Conclusions : Soil quality may be significantly changed after soil washing. The most noticeable change was the significant increase in the EC of soil and the soil health should be restored first to recycle the remediated soil. The important causes of changes in the soil quality were the separation of fine soil particles containing relatively high heavy metals from the bulk soil, soil disturbance by chemical washing solution and addition of high salts such as coagulants and pH adjust. Soil management schemes considering soil health should be soon prepared to restore the remediated soil back as an ecosystem member.


2020 ◽  
pp. 31-67
Author(s):  
V. S. Stolbovoy ◽  
A. M. Grebennikov

The study presents three groups of Soil Quality Indicators (SQI) of arable lands in the Russian Federation, such as agroclimate conditions, soil parameters and negative soil characteristics. The selection of SQI meets the requirements of the crop growth model for calculating the standard crop yield. The application of SQI in the Grain Equivalent Model allows ranking quality of the soils of agricultural lands in the country. The share of the best quality Chernozems with the standard yield of grain crops exceeding 4 t/ha is about 10%. At the same time, arable Chernozems occupy nearly 66% of total area of agricultural lands. More than 74% of the arable lands including podzolized and leached Chernozems in the northern part and Chernozems southern in the southern part of the agricultural zone are characterized by medium quality with the standard yield of grain crops 2-4 t/ha. About 10% of the arable land occupied by Chestnut solonetzic and saline soils are of poorer quality with the standard yield of grain crops less than 1 t/ha. The proposed indicators are included in the government programs for valuating and monitoring the quality of agricultural lands. The universal validity of indicators is a basis for the development of a new generation of standards for the protection and rational use of soils based on modern digital technologies and GIS approaches.


Sign in / Sign up

Export Citation Format

Share Document