scholarly journals A New Stability Indicating RP-HPLC Method for Determination of Chlorthalidone, Telmisartan and Cilnidipine in Bulk and Tablet Dosage Form

2020 ◽  
Vol 13 (1) ◽  
pp. 44-51
Author(s):  
S.Afreen Sultana ◽  
Patta. Salomi ◽  
T. VimalakKannan ◽  
K.Ravindra Reddy

In present study, accurate, precise, rapid and sensitive stability indicting HPLC-UV method has been established for quantification of Telmisartan, Cilnidipine and Chlorthalidone simultaneously in Tablet and bulk. Telmisartan, Cilnidipine and Chlorthalidone were resoluted on Sunsil C18 column (4.6mmx250mm; 5μm) using mobile phase containing Acetonitrile and Potassium dihydrogen phosphate in 50:50(v/v) ratio with flow rate of 1ml/min at 238 nm. Concentrations were linear over the range of 40-120 μg/ml for Telmisartan, 10-30 μg/ml for Cilnidipine and 6.25-18.75 μg/ml for Chlorthalidone. The percentage recovery was found to be 99.70-100.51% for Telmisartan, 98.41-100.49% for Cilnidipine and 99.34-100.48% for Chlorthalidone. % RSD for peak area was 0.069% for Telmisartan, 0.058% for Cilnidipine and 0.057% for Chlorthalidone shows that the proposed method is precise. Force-degradation studies have not shown any observable change in the results and hence the proposed method is stability indicating and hence the method is suitable for routine analysis of Telmisartan, Cilnidipine and Chlorthalidone in bulk and tablet dosage form.

Author(s):  
Bhoomi Dineshkumar Patel ◽  
Nidhi J. Dharsandiya ◽  
Ankit Chaudhary

The objective of the study is a simple, precise and accurate stability RP-HPLC method has been developed and subsequently validated for the estimation of Teneligliptin and its impurity in tablet formulation. The adequate separation was carried out using Grace Smart C18 column (250mm x 4.6mm, 5?m particle size), mixture of 0.05M Potassium dihydrogen phosphate PH 4.0 and Acetonitrile 80:20 % v/v as a mobile phase with a flow rate of 1 ml/min and the effluent was monitored at 242 nm using PDA detector. The retention time of Teneligliptin, Impurity B and Impurity G were 7.443 min, 6.650 min and 8.473 min respectively. Linearity for Teneligliptin, Impurity B and Impurity G were found in the range of 500-3000 µg/ml (R2 = 0.998), 5-15 µg/ml (R2 = 0.994) and 5-15 µg/ml (R2 = 0.998) respectively. The accuracy of the present method was evaluated at 50%, 100% and 150%. The % recoveries of drug were found to be in range of 99.315 ± 0.283 for Teneligliptin. Precision studies were carried out and the RSD values were less than two. The method was found to be robust. The proposed method was found to be specific, accurate, precise and robust can be used for simultaneous estimation of these drugs in tablet dosage form.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 2435-2441
Author(s):  
Ashok B. Patel ◽  
Amitkumar J. Vyas ◽  
Shital Faldu ◽  
Arvind N Lumbhani ◽  
Nikunj J. Patel ◽  
...  

A novel, simple, specific, accurate & precise stability-indicating Gradient reverse-phase high-performance liquid chromatography (RP-HPLC) method was developed for simultaneous estimation of Cilnidipine & Chlorthalidone in tablet dosage form, validated as per ICH guideline. The separation was achieved on Inertsil ODS column (250 mm x 4.6 mm, 5 μm) in a gradient mode.  The mobile phase consisted of Methanol, 0.025 M Potassium dihydrogen phosphate Buffer pH 5.5 adjusted by 10% v/v Ortho Phosphoric Acid (50:50 v/v) (Solution A) and Acetonitrile, 0.025 M Potassium dihydrogen phosphate Buffer pH 5.5 adjusted by 10%v/v Ortho Phosphoric Acid (75:25 v/v) (Solution B), gradient programming for 20 min at 1 ml/min rate of flow and response was detected at 225 nm. The retention time was found to be 3.580 min and 12.606 mins for Chlorthalidone and Cilnidipine, respectively. The method is validated according to ICH guideline, which includes linearity, specificity, accuracy, precision and robustness. Linearity was obtained over the concentration range of 10-60 μg/ml for Cilnidipine and 6.25-37.5 μg/ml for Chlorthalidone, had a regression coefficient (r2) almost 0.9966. The % Recovery was found to be 99.63-100.59 % and 100.24-100.51 % for Cilnidipine and Chlorthalidone, respectively. The method was found to be specific enough to separate all degradation products from the active compound. Drug samples were exposed to various stress conditions like photolysis, oxidation, heat conditions, and hydrolysis (acidic and alkaline), there was no interference of any degradants and excipient in the determination of drugs so that methods can be successfully applied for routine QC analysis.


2017 ◽  
Vol 5 (04) ◽  
pp. 10-16 ◽  
Author(s):  
Jahnavi Bandla ◽  
S. Ganapaty

Stability indicating RP-HPLC method was developed for the simultaneous quantitation of Sofosbuvir and Velpatasvir in its pharmaceutical dosage form and validated. The drugs were separated on Discovery C18 (150mm x 4.6mm, 5μ) column using 0.01N potassium dihydrogen phosphate buffer and acetonitrile (50:50%v/v) as mobile phase on isocratic mode. The mobile phase is pump into the column at flow rate of 1.0ml/min and column oven temperature is maintained at 30ºC. The drugs were detected at a wavelength 240nm. The retention time for Sofosbuvir and Velpatasvir were found to be 2.32min and 3.34min respectively. The developed method is validated in accordance with ICH guidelines. The method was found to be accurate, precise, specific and robust. The method obeys Beer’s law at a concentration range of 100μg/ml – 600μg/ml of Sofosbuvir and 25μg/ml – 150μg/ml of Velpatasvir, with correlation coefficient of 0.999 for both the drugs. The drugs were found to be stable and less prone to degradation when they are subjected to various stress conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Zhikui Yin ◽  
Suying Ma ◽  
Jincai Wang ◽  
Xiaojun Shang

A simple, sensitive, and accurate RP-HPLC coupled with UV detector method was developed and validated for simultaneous determination of matrine and tinidazole in compound lotion. The chromatographic separation of the two compounds was carried out with a SinoChoom ODS-BP C18column (5 μm, 4.6 mm × 200 mm) analytical column, using a mobile phase consisting of 0.025 mol/L potassium dihydrogen phosphate (containing triethylamine 0.05%, v/v) and acetonitrile (80 : 20, v/v) at a flow rate of 1.0 mL/min. The detection was monitored at 210 and 310 nm for matrine and tinidazole, respectively. Total run time was 12 min, and the column was maintained at 25°C. The excipients in the compound lotion did not interfere with the drug peaks. The calibration curves of matrine and tinidazole were fairly linear over the concentration ranges of 10.0–100.0 μg/mL (r=0.9954) and 20.0–200.0 μg/mL (r=0.9968), respectively. The RSD of both the intraday and interday variations was below 1.5% for matrine and tinidazole. The proposed HPLC method was validated according to International Conference on Harmonisation and proved to be suitable for the simultaneous determination of matrine and tinidazole in compound lotion.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (06) ◽  
pp. 51-61
Author(s):  
J. G Modi ◽  
◽  
J. K. Patel

A novel, simple, rapid, and highly selective stability indicating RP-HPLC method was developed and validated for simultaneous estimation of azilsartan medoxomil (AZL) and amlodipine besylate HCl (AMLO) in tablet dosage form having strength of 20 mg and 2.5 mg, respectively. The effective chromatographic separation was achieved on a Phenomenex luna ODS C18 (15 cm X 4.6 mm internal diameter, 3.5 μm Particle size) with a mobile phase composed of phosphate buffer (pH-2.5) adjusted with ortho phosphoric acid : acetonitrile in the ratio of 60:40 v/v. The mobile phase was pumped using an isocratic HPLC system at a flow rate of 0.7 mL/min with injection volume 20μl and quantification of the analytes was done at detection wavelength 254 nm. The retention times were found to be 5.918 min and 14.901 min for AMLO and AZL, respectively. The proposed HPLC method was validated with respect to linearity, ranges, precision, accuracy, specificity, robustness, LOD, and LOQ as per ICH Q2 (R1) guideline. Calibration plots were linear over the concentration range of 75-125 µg/mL and 600-1000 µg/mL with correlation coefficients 0.9966 and 0.9948 for AMLO and AZL, respectively. Forced degradation studies were performed using hydrolysis, oxidation, photolytic, and thermal degradation conditions with good resolution between the degradants and analytes. Degradation products resulting from the stress studies did not interfere with the detection of AMLO and AZL, thus the proposed method is sensitive and stability-indicating. The validated HPLC method was successfully applied to the analysis of AMLO and AZL in tablet dosage form.


2010 ◽  
Vol 93 (2) ◽  
pp. 523-530 ◽  
Author(s):  
Sérgio Luiz Dalmora ◽  
Maximiliano da Silva Sangoi ◽  
Daniele Rubert Nogueira ◽  
Lucélia Magalhães da Silva

Abstract An RP-HPLC method was validated for the determination of entecavir in tablet dosage form. The HPLC method was carried out on a Gemini C18 column (150 4.6 mm id) maintained at 30C. The mobile phase consisted of acetonitrilewater (95 + 5, v/v)/potassium phosphate buffer (0.01 M, pH 4; 9 + 91, v/v) pumped at a flow rate of 1.0 mL/min. Photodiode array detection was at 253 nm. The chromatographic separation was obtained with a retention time of 4.18 min, and the method was linear in the range of 0.5200 g/mL (r2 0.9998). The specificity and stability-indicating capability of the method was proven through forced degradation studies, which also showed that there was no interference of the excipients and an increase of the cytotoxicity only by the basic condition. The accuracy was 101.19, with bias lower than 1.81. The LOD and LOQ were 0.39 and 0.5 g/mL, respectively. Method validation demonstrated acceptable results for precision and robustness. The proposed method was applied for the analysis of tablet formulations, to improve QC and assure therapeutic efficacy.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Laura D. Simionato ◽  
Leonardo Ferello ◽  
Sebastián Stamer ◽  
Patricia D. Zubata ◽  
Adriana I. Segall

Simple, sensitive, and economical simultaneous volumetric and HPLC methods for the determination of pridinol mesylate in raw material have been developed. The volumetric method is based on the reaction of pridinol with sodium lauryl sulphate in diluted sulphuric acid. Dimethyl yellow was used as indicator to detect the end point of the titration in aqueous/organic layer. The HPLC method for the determination of pridinol mesylate employs a reverse phase C18 column at ambient temperature with a mobile phase consisting of acetonitrile: 0.05 M potassium dihydrogen phosphate, pH adjusted to 5.0 (1 : 2, v/v). The flow rate was 0.8 mL/min. Quantitation was achieved with UV detection at 258 nm based on peak area. Both methods were found to be suitable for the quality control of pridinol mesylate in raw material.


Author(s):  
Sonalika Patro ◽  
S. Harshith Kumar ◽  
M. Barath kumar ◽  
E. Masthaniah ◽  
K. Sairam ◽  
...  

A Simple, accurate and precise method was developed and validated for the determination of flucloxacillin sodium in its tablet dosage form. The separation was eluted on xterra c18 column (4.6x150mm, 5micron) using a mixture of octane buffer and methanol as mobile phase in a ratio of (30:70) which was pumped through column at a flow rate of  1ml/min. Optimised wavelength for flucloxacillin was 237nm, the retention time was 2.305minutes and the percentage purity was found to be 98.14%. System suitability parameters such as theoretical plate and tailing factor for flucloxacillin sodium was found to be 2991.64 and 1.90 respectively, the proposed method was validated as per ICH guidelines (ICH, Q2 AND (R1)) the method was found to be linear at the concentration range of 20-100µg/ml and the correlation coefficient (r2) value was found to be 0.9994 percentage RSD for precision was 0.9% and percentage RSD for ruggedness was 0.5%. The precision study was precise, robust and repeatable. The LOD and LOQ values are 2.98 and 9.98 respectively. Hence the suggested RP-HPLC method can be used for routine analysis for flucloxacillin sodium in tablet dosage form.


Author(s):  
Ramesh Jayaprakash ◽  
Senthil Kumar Natesan

Objective: The present study was aimed to develop a rapid, accurate, linear, sensitive and validate stability-indicating high performance liquid chromatographic [RP-HPLC] method for determination of vildagliptin and metformin in pharmaceutical dosage form.Methods: The chromatographic separation was performed on kromasil-C18 column [4.5 x 250 mm; 5 µm] using a mobile phase consisting of 0.05 mmol potassium dihydrogen phosphate buffer: acetonitrile [80:20 v/v], [pH adjusted to 3.5 using orthophosphoric acid]. The flow rate is 0.9 ml/min and the detection was carried out at 263 nm.Results: The chromatographic condition, the peak retention time of metformin and vildagliptin were found to be 2.215 min and 2.600 min respectively. Stress testing was performed in accordance with an international conference on harmonization [ICH] Q1A R2 guidelines. The method was validated as per ICH Q2 R1 guidelines. The calibration curve was found to be linear in the concentration range of 5-17.5 µg/ml and 50-175 µg/ml for vildagliptin and metformin. The limit of detection and quantification was found to be 0.0182 µg/ml and 0.0553 µg/ml for vildagliptin and 0.4451 µg/ml and 1.3490 µg/ml for metformin respectively.Conclusion: A new sensitive, simple and stability indicating reverse-phase high-performance liquid chromatography [RP-HPLC] method has been developed and validated for the determination of vildagliptin and metformin. The proposed method can be used for routine determination of vildagliptin and metformin.


2021 ◽  
Vol 001 (02) ◽  
Author(s):  
Shalin Parikh ◽  
Jayant Dave ◽  
Jayendrakumar Patel

A simple, precise, accurate and sensitive isocratic stability indicating RP-HPLC method has been developed and validated for determination of Ketoconazole in bulk drug and pharmaceutical dosage form. Isocratic RP-HPLC separation was achieved on Agilent C8 (150 mm ?4.6 mm, 5 µm particle size) with the mobile phase 0.3 % Triaethylamine in 20 mM potassium dihydrogen phosphate buffer pH adjusted to 4.0: Acetonitrile (68:32 % v/v) at a flow rate 1.0 ml/min. The retention time of Ketoconazole was 8.97 ± 0.50 min. The method was validated for specificity, linearity, precision, accuracy and robustness. The linear regression analysis data of calibration curve showed good linearity in concentration range 10-60 ?g/ml. The Intraday and Interday precision were 0.59-1.11 % and 0.26-1.73 % RSD respectively. The accuracy was found to be 98.11-99.26 %. The drug was subjected to the stress conditions like hydrolysis, oxidation, photolysis and dry heat. The proposed method is found to be specific with respect to degradation product formed after Acidic hydrolysis, Oxidation, Thermal and Photolytic degradation. The Ketoconazole was found to be stable under neutral hydrolytic, thermal and photolytic stress conditions. Acidic, thermal, photolytic stress conditions showed degradation. The proposed chromatographic method can be used for estimation of drug during stress testing & formal stability studies.


Sign in / Sign up

Export Citation Format

Share Document