scholarly journals EFFECTS OF WIND FARM OPERATING REGIMES IN THE POWER SYSTEM OF MACEDONIA

Author(s):  
Anton Čauševski ◽  
Tome Boševski

A b s t r a c t: The trend for achieving sustainable energy development, keeping the environment clean and utilization of renewable energy sources are imperative to the energy development in several countries. Through legislation and economical benefits, countries tend to encourage potential investors for building the technologies for energy production from renewable. In order to achieve the EU energy target to have 20% renewable in 2020, the technologies for producing electricity from renewable energy sources (RES) are used to cover the needs with more intensities. The most dominant renewable is the wind power plants(WPP) or wind parks, which are used to supply electricity to more power systems (EPS) and whose installed capacity in some European countries reaches thousands MW. This paper treats the issue of operational work of wind power in the power system of Macedonia. It is made of simulation work with wind power plants with total installed capacity of 150 MW with an annual production of 300 GWh. The considered power system of Macedonia is projected for the period of 2015 with an annual consumption of 10,000 GWh. The power plants considering operating in the simulated period are the existing thermal power units and hydro power plants together with the planned gas power plants and hydro power plants. The aim of this paper is to analyze the effects of the power system operation in case to have installed wind power plants, or what operation mode of thermal power plants (TPP) and hydro power plants (HPP) is most convenient when the system has a source of technology from the renewable with stochastically nature. This is especially important, because conventional power plants (TPP and HPP) operate and regulate the needs of consumption in the power system, but the wind power plants operate when the wind occurs within certain limits of  technical operating mode for wind turbines. Although wind is free renewable energy source, frequency of occurrence of wind with unpredictable nature and stochastically, has additional adverse impact in terms of power system operating mode. Certainly the impact of wind power on the overall the power system operation depends on power plants and configuration of the power system. In other words, the base load is covered from TPP fossil fuel or nuclear plants, and the dynamic nature of wind power can be incorporated in the power system depends on how much power plants for peak load are available in the system (storage reversible hydro or gas turbines), or how variable power can be accepted in the power system.

2021 ◽  
Vol 24 (4) ◽  
pp. 109-115
Author(s):  
Vyacheslav Valerievich Guryev ◽  
Vladimir Vyacheslavovich Kuvshinov ◽  
Boris Anatolevich Yakimovich

The Crimean Peninsula is the flagship of the development of renewable energy, as it is not only an actively developing region, but also a resort center. The energy complex of the Crimean Peninsula in recent years has increased due to the construction of new power plants (Balaklava TPP and Tavricheskaya TPP) with a total capacity of 940 MW, as well as the construction of new 220 and 330 kV transmission lines, which ensured that the peninsula’s power supply deficit was covered. A review of the regional development and use of renewable energy sources is carried out. Based on the data obtained, an analysis is made of the problems and prospects for the development of renewable energy in the region. The development of renewable energy for the Crimean Peninsula plays an important role in order to achieve environmental safety and develop the economic potential of the region. The paper substantiates the priority use of renewable energy in the region, as well as the solution of emerging problems with an increase in the share of renewable energy in the total generation. The appearance of excess electricity in the power system and the possibility of balancing the generated power of renewable energy and thermal power plants, while reducing the cost of electricity. Investment attractiveness and active population growth in the region leads to an increase in generating capacity and an increase in the maneuverability of the energy system with a significant impact of RES. The efficiency of renewable energy in the energy system, the world experience in managing renewable energy generation, the actual impact of renewable energy on the energy system in conditions of electricity shortage, and forecast work schedules of the SES wind farm provided by the electric power industry entities in the assigned way are taken into account when forming the dispatch schedule and are accepted at the request of the subject. The available experience of existing SES in the power system of the Republic of Crimea and the city of Sevastopol requires additional research, including through field testing of generating equipment. Further full-scale tests should be carried out under the conditions of a real electric power mode of the power system, which requires the introduction of modern information technologies that ensure the exchange of technological information and the implementation of appropriate control actions. The work is underway to create a regulatory framework for the control of renewable energy source operation.


2021 ◽  
Vol 288 ◽  
pp. 01003
Author(s):  
Saken Koyshybaevich Sheryazov ◽  
Sultanbek Sansyzbaevich Issenov ◽  
Ruslan Maratbekovich Iskakov ◽  
Argyn Bauyrzhanuly Kaidar

The paper describes special aspects of using the wind power plants (wind turbines) in the power grid. The paper provides the classification and schematic presentation of AC wind turbines, analyzes the role, place and performance of wind power plants in Smart Grid systems with a large share of renewable energy sources. The authors also reviews a detailed analysis of existing AC wind turbines in this paper. Recommendations are given for how to enhance the wind power plants in smart grids in terms of reliability, and introduce the hardware used in the generation, conversion and interface systems into the existing power grid. After the wind power plants had been put online, the relevance of the Smart Grid concept for existing power grids was obvious. The execution of such projects is assumed to be financially costly, requires careful study, and development of flexible algorithms, but in some cases this may be the only approach. The analysis of using wind turbines shows that the structural configuration of wind power plants can be based on the principles known in the power engineering. The approaches may differ, not fundamentally, but in engineering considerations. it is necessary to point out that the method of controlling dual-power machines is quite comprehensive so that their wide use will face operational problems caused by the lack of highly professional specialists in electric drives. Therefore, it seems advisable to use square-cage asynchronous generators in wide applications. The paper shows that as the renewable energy sources are largely used in power grids, there is an issue of maintaining the power generation at a required level considering the variability of incoming wind energy. This results in the malfunctions in the operation of relay protection devices and emergency control automatics (RP and ECA), and the complicated control. Also, the standards of the CIS countries and regulatory documents miss the requirements for the wind turbine protections, taking into account their specialty causing the inefficient standard protective logic, which does not work correctly in a number of abnormal and emergency operating modes, and especially Smart Grid in power grids.


2020 ◽  
Author(s):  
Anubhav Jain ◽  
Jayachandra N. Sakamuri ◽  
Nicolaos A. Cutululis

Abstract. Large-scale integration of renewable energy sources with power-electronic converters is pushing the power system closer to its dynamic stability limit. This has increased the risk of wide-area blackouts. Thus, the changing generation profile in the power system necessitates the use of alternate sources of energy such as wind power plants, to provide blackstart services in the future. This however, requires grid-forming and not the traditionally prevalent grid-following wind turbines. In this paper, four different grid-forming control strategies have been implemented in an HVDC-connected wind farm. A simulation study has been carried out to test the different control schemes for the different stages of energization of onshore load by the wind farm. Their transient behaviour during transformer inrush, converter pre-charge and de-blocking, and onshore block-load pickup, has been compared to demonstrate the blackstart capabilities of grid-forming wind power plants for early participation in power system restoration.


2015 ◽  
Vol 19 (3) ◽  
pp. 771-780 ◽  
Author(s):  
Zihnija Hasovic ◽  
Boris Cosic ◽  
Adisa Omerbegovic-Arapovic ◽  
Neven Duic

This paper investigates current and planned investments in new power plants in Bosnia and Herzegovina and impact of these investments on the energy sector, CO2 emission and internationally committed targets for electricity from renewable sources up to year 2020. Bosnia and Herzegovina possesses strong renewable energy potential, in particular hydro and biomass. However, the majority of energy production is conducted in outdated power plants and based on fossil fuels, resulting in environment pollution. New major investments The Stanari Thermal plant (300 MW) and the investment in Block 7 (450 MW) at the Thermal Plant Tuzla are again focused on fossil fuels. The power sector is also highly dependent on the hydrology as 54% of current capacities are based on large hydro power. In order to investigate how the energy system of Bosnia and Herzegovina will be affected by these investments and hydrology, the EnergyPLAN model was used. Based on the foreseen demand for year 2020 several power plants construction and hydrology scenarios have been modelled to cover a range of possibilities that may occur. This includes export orientation of Stanari plant, impact of wet, dry and average year, delayed construction of Tuzla Block 7, constrained construction of hydro power plants, and retirement of thermal units. It can be concluded that energy system can be significantly affected by delayed investments but in order to comply with renewables targets Bosnia and Herzegovina will need to explore the power production from other renewable energy sources as well.


2020 ◽  
Vol 24 (1) ◽  
pp. 691-705
Author(s):  
Abozar Hashemi ◽  
Ghasem Derakhshan ◽  
M. R. Alizadeh Pahlavani ◽  
Babak Abdi

Abstract Decreasing fossil energy resources and increasing greenhouse gas emissions increase the need for clean and renewable energy sources day by day. One of the sources of renewable energy is wind power, which has been constantly evolving in recent years. Wind power plants are sometimes unresponsive during peak hours, so a backup storage system seems essential for these power plants. In this study, a hybrid system is presented for connection to wind power plants consisting of fuel cell and hydrogen production, to provide reliable power and valuable by-products. In this paper, a case study is conducted for the desired system in the Shahryar County. The techno-economic optimization of the above system indicates that in the best design (consisting of three wind turbines), the annual production capacity of the hybrid system will be 1795 MWh, of which 12 % is the share of fuel cells. The results show that the hybrid system increases the capacity factor of the wind power plant by 2.8 %. The calculated cost of energy (COE) and the net present cost (NPC) for the hybrid system would amount to $ 0.77 and $ 5 235.066, respectively.


Author(s):  
M. P. Kulyk

The characteristic of the united power system of Ukraine, based on thermal, nuclear and hydro power plants, as well as on alternative and renewable sources, is carried out. The structure of power system potential indicates a lack of maneuver capacity, some plants are of low mobility. Thermal power is in critical condition due to expired service time of the main technological equipment, additionally, it is a huge source of emissions of harmful substances into the environment. An attempt to use them to cover peak loads only worsens their critical state.It is suggested to restore thermal power on the basis of combined steam and gas power plants. Moreover, for operation of gas section it is necessary to use working substance, which is formed in an additional furnace by heating the compressed air with heat from combustion of some part of coal flow, which subsequently enters the main furnace. The steam and gas generation branches are parallel connected, which extends the range of power change (increasing its maneuverability.) Gas generation increases mobility (rate of power change). For combustion of organic fuel, oxygen enriched atmospheric air is fed, and a nitrogen-based fraction can form a working substance for gas generation. With such an organization of combustion the coefficient of excess air can be ignored, which enables to reduce the volume of flue gases. The membrane separation of atmospheric air into fractions - one en-riched with oxygen, and another with nitrogen, improves the environmentalperformance of a power plant, while increasing its power and economic indices. On the example of the boiler unit TP-92 the basic parameters of a power plant are checked by a calculation method. It is confirmed that the proposed technical solutions point to the correctness and validity of the assumptions. Analysis of the existing technical level of scientific research increases confidence in perspective of the selected direction.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5291
Author(s):  
Stefano Bracco

The exploitation of distributed renewable energy sources leads to a low-carbon energy transition, mainly based on the optimal integration of hydro, PV and wind power plants with the remaining high-performance fossil-fuel power stations. In the last twenty years, European Union (EU) countries have shown a significant increase of the power installed in new PV and wind power plants, together with the refurbishment of small and medium size hydro stations. In particular, in Italy, PV and wind energy production has strongly increased and nowadays there are regions characterized by a very green energy mix. In this new scenario, energy storage becomes a viable solution to mitigate the variability of renewable energy sources thus optimizing the network operation. The present paper is focused on the Liguria region, in the North of Italy and in particular on the Bormida Valley where nowadays more than the half of the annual electricity consumption is covered by the renewable energy local production. The paper describes the current energy situation and proposes an optimization tool to investigate the possibility of installing new PV and wind power plants, as well as energy intensive storage units based on sodium-sulphur batteries; moreover, different scenarios are analyzed through the definition of economic and environmental key performance indicators.


2019 ◽  
Vol 34 ◽  
pp. 209-214
Author(s):  
Mariana Ciobanu ◽  
Ionela Gabriela Bucşe ◽  
Stefan Radu

Romania was the first Eastern European country to be has joined the Partnership for Renewable Energy and Energy Efficiency. The potential of Romania in the field of green energy production is as follows: 65% biomass, 17% wind energy, 12% solar energy, 4% micro hydro power plants, 1% + 1% photovoltaic + geothermal. Maximizing the full potential on the various green energy categories require serious investment and requires facilities granted to investors in this sector. Renewable energy sources can effectively contribute to increasing internal resources, which gives them a certain priority in energy policy.


2020 ◽  
Vol 175 ◽  
pp. 11009
Author(s):  
Nikolay Rudenko ◽  
Valery Ershov ◽  
Viacheslav Evstafev

The article contains the following technical proposals for the power supply of autonomous agricultural facilities using renewable energy sources: the use of hybrid solar-wind power plants, the use of vortex wind power plants with a vertical axis to use both the energy of horizontal wind flows and the energy of upward air flows. The structure and operation algorithm of an autonomous power supply system based on a hybrid solarwind power plant and a diesel generator for autonomous agricultural facilities of small and medium power in regions where there is no distribution electric network are proposed. This system will allow for insufficient wind load to ensure reliable power supply to an autonomous agricultural facility with minimal use of diesel fuel. The design of a vortex wind power installation has been developed. The fastening on the shaft of the wind power installation of a conical helical blade with a variable radius, decreasing in the direction from the lower to the upper cut of the socket, improves the efficiency of the installation. The proposed installation makes it possible to use small winds and low-potential thermal ascending air currents, reduce low-frequency vibration and noise, and also increase the stability and efficiency of use of wind energy.


Author(s):  
Zivojin Stamenkovic ◽  
Dragan Svrkota

Population growth and new forms of energy use have the effect that the energy demand grows year after year. The harmful influence of the use of fossil and nuclear fuels has influenced the intensive development of renewable energy sources (solar energy, small hydro power plants, wind energy, bio-renewable sources - biomass, geothermal energy). This paper gives an overview of the choice of design solution, technical parameters and the efficiency of small hydro power plants (SHPP) on small watercourses. Special attention in these considerations is dedicated to harmonization of selected solutions with natural resources and protection of ecosystems. In order to define the technical solution of one small HPP on a small watercourse, the following analyzes and studies need to be done: Hydrological study; Analysis of the available hydro potential; Pre-feasibility study of the chosen technical solution; Study on Environmental Impact Assessment; Analysis of the investment value of the elements of the system and the system as a whole; Analysis of annual fees and expenses. In analyzing the available hydro potential, it is necessary to examine in detail the influence of the minimum sustainable flow rate in the watercourse (biological minimum) both from the aspect of environmental protection and from the aspect of the techno-economic justification for SHPP construction. On the basis of the "cross-cutting" of the results of these analyzes, one can see the techno-economically justified solution for the construction of SHPP in line with the ecosystem. The goal of all previous analyzes is to select a technical solution that maximizes the use of hydro power potential and ensures optimum use of renewable energy sources, while paying special attention to ecology, environmental protection and sustainable development.


Sign in / Sign up

Export Citation Format

Share Document