Computational modeling and analysis of an automotive suspension system response with nonlinear damping curves imported from a large external database

Author(s):  
Bruno Haselein ◽  
Lucas Farias ◽  
Carlos Eduardo de Souza
Author(s):  
Amit Shukla ◽  
Jeong Hoi Koo

Nonlinear active suspension systems are very popular in the automotive applications. They include nonlinear stiffness and nonlinear damping elements. One of the types of damping element is a magneto-rheological fluid based damper which is receiving increased attention in the applications to the automotive suspension systems. Latest trends in suspension systems also include electronically controlled systems which provide advanced system performance and integration with various processes to improve vehicle ride comfort, handling and stability. A control bifurcation of a nonlinear system typically occurs when its linear approximation loses stabilizability. These control bifurcations are different from the classical bifurcation where qualitative stability of the equilibrium point changes. Any nonlinear control system can also exhibit control bifurcations. In this paper, control bifurcations of the nonlinear active suspension system, modeled as a two degree of freedom system, are analyzed. It is shown that the system looses stability via Hopf bifurcation. Parametric control bifurcation analysis is conducted and results presented to highlight the significance of the design of control system for nonlinear active suspension system. A framework for the design of feedback using the parametric analysis for the control bifurcations is proposed and illustrated for the nonlinear active suspension system.


2019 ◽  
Vol 3 (1) ◽  
pp. 160-165
Author(s):  
Hendry D. Chahyadi

The designs of automotive suspension system are aiming to avoid vibration generated by road condition interference to the driver. This final project is about a quarter car modeling with simulation modeling and analysis of Two-Mass modeling. Both existing and new modeling are being compared with additional spring in the sprung mass system. MATLAB program is developed to analyze using a state space model. The program developed here can be used for analyzing models of cars and vehicles with 2DOF. The quarter car modelling is basically a mass spring damping system with the car serving as the mass, the suspension coil as the spring, and the shock absorber as the damper. The existing modeling is well-known model for simulating vehicle suspension performance. The spring performs the role of supporting the static weight of the vehicle while the damper helps in dissipating the vibrational energy and limiting the input from the road that is transmitted to the vehicle. The performance of modified modelling by adding extra spring in the sprung mass system provides more comfort to the driver. Later on this project there will be comparison graphic which the output is resulting on the higher level of damping system efficiency that leads to the riding quality.


2018 ◽  
Vol 229 ◽  
pp. 672-699 ◽  
Author(s):  
Mohamed A.A. Abdelkareem ◽  
Lin Xu ◽  
Mohamed Kamal Ahmed Ali ◽  
Ahmed Elagouz ◽  
Jia Mi ◽  
...  

Author(s):  
Shaohua Li ◽  
Shaopu Yang

In this work, primary resonance of a single-degree-of-freedom (SDOF) vehicle suspension system with nonlinear stiffness and nonlinear damping under multi-frequency excitations is investigated. The primary resonance equation is obtained by average method, and then the system’s bifurcation behaviors are studied by singularity theory. In addition, the effect of changing physical model parameters on the system’s primary resonance is studied.


Author(s):  
Zhifei WU ◽  
Yuxia Xiang ◽  
Chenggui Liu

To analyze the influence of the leaf spring hysteresis characteristics on the vehicle body vibration performance, it is necessary to take the physical nonlinear factors into account in the suspension dynamic modeling analysis. The hysteresis characteristics of the leaf spring are caused by the contact and friction between the spring pieces. Besides that, the damping elements of the suspension system are also strongly nonlinear. And hence this article presents a generalized Maxwell-slip damper (GMD) model, which can represent the general hysteresis characteristics of the suspension system. The GMD model incorporates spring stiffness and nonlinear damping in addition to spring friction using the Maxwell model. Then the effects of various parameters on the hysteresis characteristics of GMD model are analyzed and verified by simulation and bench experiments. In addition, an eight degree of freedom (8-DOF) full vehicle model capturing some frictional characteristics was established to study vehicle vibration performance under random road excitation. At the same time, the actual vehicle test is conducted under different road conditions. Ultimately, the results of the nonlinear suspension model have a reasonable agreement with the experimental results, which further demonstrates the credibility of the proposed GMD model. That is, the full vehicle dynamic model with friction force is entirely accurate and useful. The proposed nonlinear hysteresis model may be instructive for accessing the vehicle vibration response to further study the direct effects of friction on vehicle handling and driver feedback.


2013 ◽  
Vol 135 (1) ◽  
Author(s):  
Kalpesh Singal ◽  
Rajesh Rajamani

Previous research has shown that a semiactive automotive suspension system can provide significant benefits compared to a passive suspension but cannot quite match the performance of a fully active system. The advantage of the semiactive system over an active system is that it consumes almost zero energy by utilizing a variable damper whose damping coefficient is changed in real time, while a fully active suspension consumes significant power for its operation. This paper explores a new zero-energy active suspension system that combines the advantages of semiactive and active suspensions by providing the performance of the active system at zero energy cost. Unlike a semiactive system in which the energy is always dissipated, the proposed system harvests and recycles energy to achieve active operation. An electrical motor-generator is used as the zero-energy actuator and a controller and energy management system are developed. An energy adaptive sky-hook gain is proposed to prevent the system from running out of energy, thereby eliminating the need to switch between passive and active systems. The results show that the system performs at least as well as a passive system for all frequencies, and is equivalent to an active system for a broad range of frequencies including both resonant frequencies.


Sign in / Sign up

Export Citation Format

Share Document