scholarly journals LEM Characterization of Synthetic Jet Actuators Driven by Piezoelectric Element: A Review

Author(s):  
Matteo Chiatto ◽  
Francesco Capuano ◽  
Gennaro Coppola ◽  
Luigi de Luca

In the last decades synthetic jet actuators have gained much interest among the flow control techniques due to their short response time, high jet velocity and absence of traditional piping, that matches the requirements of reduced size and low weight. A synthetic jet is generated by the diaphragm oscillation (generally driven by a piezoelectric element) in a relatively small cavity, producing periodic cavity pressure variations associated with cavity volume changes. The pressured air exhausts through an orifice, converting diaphragm electrodynamic energy into jet kinetic energy. This review paper faces the development of various lumped-element models (LEMs) as practical tools to design and manufacture the actuators. LEMs can quickly predict device performances such as the frequency response in terms of diaphragm displacement, cavity pressure and jet velocity, as well as the efficiency of energy conversion of input Joule power into useful kinetic power of air jet. The actuator performance is analyzed also by varying typical geometric parameters such as cavity height and orifice diameter and length, through a suited dimensionless form of the governing equations. A comprehensive and detailed physical modeling aimed to evaluate the device efficiency is introduced, shedding light on the different stages involved in the process. Overall, the influence of the coupling degree of the two oscillators, the diaphragm and the Helmholtz’s one, on the device performance is discussed throughout the paper.

Actuators ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 67 ◽  
Author(s):  
Tim Persoons ◽  
Rick Cressall ◽  
Sajad Alimohammadi

Synthetic jet actuators (SJA) are emerging in various engineering applications, from flow separation and noise control in aviation to thermal management of electronics. A SJA oscillates a flexible membrane inside a cavity connected to a nozzle producing vortices. A complex interaction between the cavity pressure field and the driving electronics can make it difficult to predict performance. A reduced-order model (ROM) has been developed to predict the performance of SJAs. This paper applies this model to a canonical configuration with applications in flow control and electronics cooling, consisting of a single SJA with a rectangular orifice, emanating perpendicular to the surface. The practical implementation of the ROM to estimate the relationship between cavity pressure and jet velocity, jet velocity and diaphragm deflection and applied driving voltage is explained in detail. Unsteady Reynolds-averaged Navier Stokes computational fluid dynamics (CFD) simulations are used to assess the reliability of the reduced-order model. The CFD model itself has been validated with experimental measurements. The effect of orifice aspect ratio on the ROM parameters has been discussed. Findings indicate that the ROM is capable of predicting the SJA performance for a wide range of operating conditions (in terms of frequency and amplitude).


AIAA Journal ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 240-247 ◽  
Author(s):  
Quentin Gallas ◽  
Ryan Holman ◽  
Toshikazu Nishida ◽  
Bruce Carroll ◽  
Mark Sheplak ◽  
...  

2002 ◽  
Author(s):  
Q. Gallas ◽  
M. Sheplak ◽  
A. Kaysap ◽  
B. Carroll ◽  
T. Nishida ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
pp. 5666
Author(s):  
Paweł Gil ◽  
Joanna Wilk ◽  
Michał Korzeniowski

This paper presents the results of experimental investigations of 108 geometrical configurations of a loudspeaker-driven synthetic jet (SJ) actuator. The considered cases of the SJ actuator were characterized by a high coupling ratio. The experiment was performed to determine the impact of geometry on the Helmholtz resonance frequency. Geometrical parameters of the orifice diameter, orifice length, and cavity volume were changed within a wide range. The dependences of electrical and flow parameters that characterized the synthetic jet actuators as a function of the excitation frequency were also identified. The main goal of the research was to identify the optimal mathematical formula of the model to calculate the Helmholtz resonance frequency in the case of synthetic jet actuators. To determine the model that was characterized by the best fit of the experimental results, an additional geometrical dimensionless parameter, representing the ratio of the orifice cross-section area to the cross-section area of the cavity, was introduced. A significant impact of this parameter on the effective orifice length was noted. Based on the research findings, a model was obtained for which the results of the experiment were in the error range of ±6% for 95% of the measurement data. The obtained model is an improved version of the classical model used in the description of the resonance frequency in the case of a synthetic jet actuator. The model enables highly accurate determination of the Helmholtz resonance frequency at which the maximum synthetic jet actuator parameters occur.


2007 ◽  
Vol 78 (3-4) ◽  
pp. 283-307 ◽  
Author(s):  
Shan Zhong ◽  
Mark Jabbal ◽  
Hui Tang ◽  
Luis Garcillan ◽  
Fushui Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document