scholarly journals Cold and Heat Stress Diversely Alters Both Cauliflower Respiration and Distinct Mitochondrial Proteins Including OXPHOS Components and Matrix Enzymes

Author(s):  
Michał Rurek ◽  
Magdalena Czołpińska ◽  
Tomasz Andrzej Pawłowski ◽  
Włodzimierz Krzesiński ◽  
Tomasz Spiżewski

Complex proteomic and physiological approaches to study cold and heat stress responses in plant mitochondria are still limited. Variations in the mitochondrial proteome of cauliflower (Brassica oleracea var. botrytis) curds after cold and heat and after stress recovery were assayed by 2D PAGE in relation to respiratory parameters. Quantitative analysis of the mitochondrial proteome revealed numerous stress-affected protein spots. In cold alternative oxidase isoforms were extensively upregulated; major downregulations in the level of photorespiratory enzymes, porine isoforms, oxidative phosphorylation (OXPHOS) and some low-abundant proteins were observed. On the contrary, distinct proteins, including carbohydrate metabolism enzymes, heat-shock proteins, translation, protein import, and OXPHOS components were involved in heat response and recovery. Few metabolic regulations were suggested. Cauliflower plants appeared less susceptible to heat; closed stomata in heat stress resulted in moderate photosynthetic, but only minor respiratory impairments, however photosystem II performance was unaffected. Decreased photorespiration corresponded with proteomic alterations in cold. Our results show that cold and heat stress not only operate in diverse mode (exemplified by cold-specific accumulation of some heat shock proteins), but exert some associations on molecular and physiological levels. This implies more complex model of action of investigated stresses on plant mitochondria.

Author(s):  
Mahmoud Hussien Abou-Deif ◽  
Mohamed Abdel-Salam Rashed ◽  
Kamal Mohamed Khalil ◽  
Fatma El-Sayed Mahmoud

Abstract Background Maize is one of the important cereal food crops in the world. High temperature stress causes adverse influence on plant growth. When plants are exposed to high temperatures, they produce heat shock proteins (HSPs), which may impart a generalized role in tolerance to heat stress. Proteome analysis was performed in plant to assess the changes in protein types and their expression levels under abiotic stress. The purpose of the study is to explore which proteins are involved in the response of the maize plant to heat shock treatment. Results We investigated the responses of abundant proteins of maize leaves, in an Egyptian inbred line of maize “K1”, upon heat stress through two-dimensional electrophoresis (2-DE) on samples of maize leaf proteome. 2-DE technique was used to recognize heat-responsive protein spots using Coomassie Brilliant Blue (CBB) and silver staining. In 2-D analysis of proteins from plants treated at 45 °C for 2 h, the results manifested 59 protein spots (4.3%) which were reproducibly detected as new spots where did not present in the control. In 2D for treated plants for 4 h, 104 protein spots (7.7%) were expressed only under heat stress. Quantification of spot intensities derived from heat treatment showed that twenty protein spots revealed clear differences between the control and the two heat treatments. Nine spots appeared with more intensity after heat treatments than the control, while four spots appeared only after heat treatments. Five spots were clearly induced after heat treatment either at 2 h or 4 h and were chosen for more analysis by LC-MSMS. They were identified as ATPase beta subunit, HSP26, HSP16.9, and unknown HSP/Chaperonin. Conclusion The results revealed that the expressive level of the four heat shock proteins that were detected in this study plays important roles to avoid heat stress in maize plants.


2018 ◽  
Vol 50 (5) ◽  
pp. 1617-1637 ◽  
Author(s):  
Gang-Zheng Wang ◽  
Chao-Jun Ma ◽  
Yi Luo ◽  
Sha-Sha Zhou ◽  
Yan Zhou ◽  
...  

Background/Aims: Heat stress could cause huge losses for Lentinula edodes in China and other Asian cultivation areas. Yet our understanding of mechanism how to defend to heat stress is incomplete. Methods: Using heat-tolerant and heat-sensitive strains of L. edodes, we reported a combined proteome and transcriptome analysis of L. edodes response to 40 °C heat stress for 24 h. Meanwhile, the effect of LeDnaJ on the thermotolerance and IAA (indoleacetic acid) biosynthesis in L. edodes was analyzed via the over-expression method. Results: The proteome results revealed that HSPs (heat shock proteins) such as Hsp40 (DnaJ), Hsp70, Hsp90 and key enzymes involved in tryptophan and IAA metabolism process LeTrpE, LeTrpD, LeTam-1, LeYUCCA were more highly expressed in S606 than in YS3357, demonstrating that HSPs and tryptophan as well as IAA metabolism pathway should play an important role in thermotolerance. Over-expression of LeDnaJ gene in S606 strains showed better tolerance to heat stress. It was also documented that intracellular IAA accumulation of S606 (8-fold up) was more than YS3357 (2-fold up), and exogenous IAA enhanced L. edodes tolerance to heat stress. Conclusion: Our data support the interest of LeTrpE, LeDnaJ, tryptophan and IAA could play a pivotal role in enhancing organism thermotolerance.


2004 ◽  
Vol 41 (2) ◽  
pp. 269-281 ◽  
Author(s):  
Sergey Miroshnichenko ◽  
Joanna Tripp ◽  
Uta zur Nieden ◽  
Dieter Neumann ◽  
Udo Conrad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document