heat shock transcription factors
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 21)

H-INDEX

23
(FIVE YEARS 2)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 203
Author(s):  
Yasuko Tokunaga ◽  
Ken-Ichiro Otsuyama ◽  
Naoki Hayashida

Cell division and cell cycle mechanism has been studied for 70 years. This research has revealed that the cell cycle is regulated by many factors, including cyclins and cyclin-dependent kinases (CDKs). Heat shock transcription factors (HSFs) have been noted as critical proteins for cell survival against various stresses; however, recent studies suggest that HSFs also have important roles in cell cycle regulation-independent cell-protective functions. During cell cycle progression, HSF1, and HSF2 bind to condensed chromatin to provide immediate precise gene expression after cell division. This review focuses on the function of these HSFs in cell cycle progression, cell cycle arrest, gene bookmarking, mitosis and meiosis.


2021 ◽  
Author(s):  
Daniel Buszewicz ◽  
Łucja Maria Kowalewska ◽  
Radosław Mazur ◽  
Marta Zajbt-Łuczniewska ◽  
Liliana Surmacz ◽  
...  

Polyprenols are ubiquitous isoprenoid compounds that accumulate in large quantities in plant photosynthetic tissues. While our knowledge of polyprenol biochemistry is constantly expanding, the regulation of their biosynthesis as well as the molecular basis of their cellular action are still poorly understood. In Arabidopsis, the polyprenols Pren-9, -10 and -11, synthesized by cis-prenyltransferase 7 (CPT7), are localized in plastidial membranes and affect the photosynthetic performance of chloroplasts. In this report we present evidence that plastidial polyprenols are among the major constituents of thylakoid membranes. Disturbances in polyprenol level, caused by alterations in CPT7 expression, change chloroplast ultrastructure, affect aggregation of LHCII complexes and modulate non-photochemical quenching (NPQ). Moreover, we show that Arabidopsis responds to high temperature by upregulating expression of CPT7 and increasing the accumulation of CPT7-derived polyprenols. These heat-induced changes in polyprenol biosynthesis are mediated by Heat Shock Transcription Factors of the HSFA1 family, the master regulators of heat stress response. Collectively, results presented in this report bring us closer to understanding the mechanisms by which polyprenols affect plant physiology and provide an additional link between chloroplast biology and plant responses to changing environmental conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2335
Author(s):  
Saqlain Haider ◽  
Shazia Rehman ◽  
Yumna Ahmad ◽  
Ali Raza ◽  
Javaria Tabassum ◽  
...  

Heat shock transcription factors (HSFs) regulate many environmental stress responses and biological processes in plants. Maize (Zea mays L.) is a major cash crop that is grown worldwide. However, the growth and yield of maize are affected by several adverse environmental stresses. Therefore, investigating the factors that regulate maize growth and development and resistance to abiotic stress is an essential task for developing stress-resilient maize varieties. Thus, a comprehensive genome-wide identification analysis was performed to identify HSFs genes in the maize genome. The current study identified 25 ZmHSFs, randomly distributed throughout the maize genome. Phylogenetic analysis revealed that ZmHSFs are divided into three classes and 13 sub-classes. Gene structure and protein motif analysis supported the results obtained through the phylogenetic analysis. Segmental duplication is shown to be responsible for the expansion of ZmHSFs. Most of the ZmHSFs are localized inside the nucleus, and the ZmHSFs which belong to the same group show similar physio-chemical properties. Previously reported and publicly available RNA-seq analysis revealed a major role of class A HSFs including ZmHSFA-1a and ZmHSFA-2a in all the maize growth stages, i.e., seed, vegetative, and reproductive development. Under abiotic stress conditions (heat, drought, cold, UV, and salinity), members of class A and B ZmHSFs are induced. Gene ontology and protein–protein interaction analysis indicated a major role of ZmHSFs in resistance to environmental stress and regulation of primary metabolism. To summarize, this study provides novel insights for functional studies on the ZmHSFs in maize breeding programs.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1055
Author(s):  
Romy Petroll ◽  
Mona Schreiber ◽  
Hermann Finke ◽  
J. Mark Cock ◽  
Sven B. Gould ◽  
...  

Red algae (Rhodophyta) belong to the superphylum Archaeplastida, and are a species-rich group exhibiting diverse morphologies. Theory has it that the unicellular red algal ancestor went through a phase of genome contraction caused by adaptation to extreme environments. More recently, the classes Porphyridiophyceae, Bangiophyceae, and Florideophyceae experienced genome expansions, coinciding with an increase in morphological complexity. Transcription-associated proteins (TAPs) regulate transcription, show lineage-specific patterns, and are related to organismal complexity. To better understand red algal TAP complexity and evolution, we investigated the TAP family complement of uni- and multi-cellular red algae. We found that the TAP family complement correlates with gain of morphological complexity in the multicellular Bangiophyceae and Florideophyceae, and that abundance of the C2H2 zinc finger transcription factor family may be associated with the acquisition of morphological complexity. An expansion of heat shock transcription factors (HSF) occurred within the unicellular Cyanidiales, potentially as an adaption to extreme environmental conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yajun Liang ◽  
Junduo Wang ◽  
Juyun Zheng ◽  
Zhaolong Gong ◽  
Zhiqiang Li ◽  
...  

Heat shock transcription factors (HSFs) are involved in environmental stress response and plant development, such as heat stress and flowering development. According to the structural characteristics of the HSF gene family, HSF genes were classified into three major types (HSFA, HSFB, and HSFC) in plants. Using conserved domains of HSF genes, we identified 621 HSF genes among 13 cotton genomes, consisting of eight diploid and five tetraploid genomes. Phylogenetic analysis indicated that HSF genes among 13 cotton genomes were grouped into two different clusters: one cluster contained all HSF genes of HSFA and HSFC, and the other cluster contained all HSF genes of HSFB. Comparative analysis of HSF genes in Arabidopsis thaliana, Gossypium herbaceum (A1), Gossypium arboreum (A2), Gossypium raimondii (D5), and Gossypium hirsutum (AD1) genomes demonstrated that four HSF genes were inherited from a common ancestor, A0, of all existing cotton A genomes. Members of the HSF gene family in G. herbaceum (A1) genome indicated a significant loss compared with those in G. arboretum (A2) and G. hirsutum (AD1) A genomes. However, HSF genes in G. raimondii (D5) showed relative loss compared with those in G. hirsutum (AD1) D genome. Analysis of tandem duplication (TD) events of HSF genes revealed that protein-coding genes among different cotton genomes have experienced TD events, but only the two-gene tandem array was detected in Gossypium thurberi (D1) genome. The expression analysis of HSF genes in G. hirsutum (AD1) and Gossypium barbadense (AD2) genomes indicated that the expressed HSF genes were divided into two different groups, respectively, and the expressed HSF orthologous genes between the two genomes showed totally different expression patterns despite the implementation of the same abiotic stresses. This work will provide novel insights for the study of evolutionary history and expression characterization of HSF genes in different cotton genomes and a widespread application model for the study of HSF gene families in plants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susan Schröpfer ◽  
Isabelle Vogt ◽  
Giovanni Antonio Lodovico Broggini ◽  
Andreas Dahl ◽  
Klaus Richter ◽  
...  

AbstractMost of the commercial apple cultivars are highly susceptible to fire blight, which is the most devastating bacterial disease affecting pome fruits. Resistance to fire blight is described especially in wild Malus accessions such as M. × robusta 5 (Mr5), but the molecular basis of host resistance response to the pathogen Erwinia amylovora is still largely unknown. The bacterial effector protein AvrRpt2EA was found to be the key determinant of resistance response in Mr5. A wild type E. amylovora strain and the corresponding avrRpt2EA deletion mutant were used for inoculation of Mr5 to induce resistance or susceptible response, respectively. By comparison of the transcriptome of both responses, 211 differentially expressed genes (DEGs) were identified. We found that heat-shock response including heat-shock proteins (HSPs) and heat-shock transcription factors (HSFs) are activated in apple specifically in the susceptible response, independent of AvrRpt2EA. Further analysis on the expression progress of 81 DEGs by high-throughput real-time qPCR resulted in the identification of genes that were activated after inoculation with E. amylovora. Hence, a potential role of these genes in the resistance to the pathogen is postulated, including genes coding for enzymes involved in formation of flavonoids and terpenoids, ribosome-inactivating enzymes (RIPs) and a squamosa promoter binding-like (SPL) transcription factor.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 291
Author(s):  
Akhilesh Kumar Kushawaha ◽  
Ambreen Khan ◽  
Sudhir Kumar Sopory ◽  
Neeti Sanan-Mishra

Rice plants often encounter high temperature stress, but the associated coping strategies are poorly understood. It is known that a prior shorter exposure to high temperature, called thermo-priming, generally results in better adaptation of the plants to subsequent exposure to high temperature stress. High throughput sequencing of transcript and small RNA libraries of rice seedlings primed with short exposure to high temperature followed by high temperature stress and from plants exposed to high temperature without priming was performed. This identified a number of transcripts and microRNAs (miRs) that are induced or down regulated. Among them osa-miR531b, osa-miR5149, osa-miR168a-5p, osa-miR1846d-5p, osa-miR5077, osa-miR156b-3p, osa-miR167e-3p and their respective targets, coding for heat shock activators and repressors, showed differential expression between primed and non-primed plants. These findings were further validated by qRT-PCR. The results indicate that the miR-regulated heat shock proteins (HSPs)/heat shock transcription factors (HSFs) may serve as important regulatory nodes which are induced during thermo-priming for plant survival and development under high temperatures.


Sign in / Sign up

Export Citation Format

Share Document