scholarly journals Plasma-Assisted Biomass Gasification in a Drop Tube Reactor at Atmospheric Pressure

Author(s):  
Yin Pang ◽  
Leo Bahr ◽  
Peter Fendt ◽  
Lars Zigan ◽  
Stefan Will ◽  
...  

Compared to conventional allothermal gasification of solid fuels (e.g. biomass, charcoal, lignite etc.), plasma-assisted gasification offers an efficient method to apply energy into the gasification process to increase the flexibility of operation conditions and to increase the reaction kinetics. In particular, non-thermal plasmas (NTP) are promising, in which thermal equilibrium is not reached and electrons have substantially higher mean energy than gas molecules. Thus it is generally assumed that in NTP the supplied energy is utilized more efficiently for generating free radicals initiating gasification reactions than thermal plasma processes. In order to investigate this hypothesis, we compared purely thermal to non-thermal plasma assisted gasification of biomass in steam in a drop tube reactor at atmospheric pressure. The NTP was provided by means of gliding arcs between two electrodes aligned in the inlet steam flow. Electric power of about 1 kW was supplied using a high voltage generator operating at frequencies between 70 and 150 kHz and voltage amplitudes up to 10 kV. A laser-assisted optical method (Raman spectroscopy) was applied for measuring the gas temperature both in the conventionally heated steam and flow-down of the visible plasma filaments of the gliding arcs. Reaction yields and rates were evaluated using these measured gas temperatures. The first experimental results have shown that the non-thermal plasma not only promotes the carbon conversion of the fuel particles, but also accelerates the reaction kinetics. The carbon conversion is increased by nearly 10% using wood powder as the fuel. With charcoal powder more than 3% are converted into syngas.

Author(s):  
Yin Pang ◽  
Thomas Hammer ◽  
Dominik Mueller ◽  
Juergen Karl

The motivation of this work is to investigate experimentally the influence of non-thermal plasma (NTP) application on the reaction kinetics of atmospheric pressure steam gasification of charcoal using a thermostatically controlled drop tube reactor. A gliding-arc generator provides about 1 kW electrical power NTP. For comparison thermal gasification is investigated under comparable flow and specific energy input conditions providing additional heat to the steam. Optical temperature measurement 20 cm flow down of the NTP zone is utilized to characterize the specific enthalpy of the reactive flow. The composition of produced syngas is measured by a gas analyzer and used for the calculation of gas flow rates. The results show a NTP-enhancement on the production of individual syngas components (H2, CO, CH4), especially on hydrogen production by around 39%. The syngas-based carbon conversion and hydrogen release are calculated from the carbon and hydrogen balance between the correspondent content in syngas and in the feedstock. The NTP promoted the carbon conversion and hydrogen release by 25% and 31%, respectively. The first-order reaction kinetics are determined by data-fitting in an Arrhenius diagram. The plasma enhanced the reaction rate coefficients by 27%. Based on experimental results and other literature, possible plasma-induced reactions are proposed.


Fuel ◽  
2019 ◽  
Vol 253 ◽  
pp. 95-105
Author(s):  
Yin Pang ◽  
Thomas Hammer ◽  
Dominik Müller ◽  
Jürgen Karl

2021 ◽  
pp. 223-251
Author(s):  
Mahreen ◽  
Priyanka Prasad ◽  
Satyananda Kar ◽  
Jatindra K. Sahu

2019 ◽  
Vol 4 (12) ◽  
pp. 2108-2116 ◽  
Author(s):  
Sergio H. Moreno ◽  
Andrzej I. Stankiewicz ◽  
Georgios D. Stefanidis

Reaction kinetics study of the vibrational-to-translational temperature ratio of CO2, a crucial variable to achieve an energetically efficient dissociation in non-thermal plasma.


Sign in / Sign up

Export Citation Format

Share Document