scholarly journals The Zeros of the Dirichlet Beta Function Encode the Odd Primes and Have Real Part 1/2

Author(s):  
Anthony Lander

It is well known that the primes and prime powers have a deep relationship with the nontrivial zeros of Riemann’s zeta function. This is a reciprocal relationship. The zeros and the primes are encoded in each other and are reciprocally recoverable. Riemann’s zeta is an extended or continued version of Euler’s zeta function which in turn equates with Euler’s product formula over the primes. This paper shows that the zeros of the converging Dirichlet or Catalan beta function, which requires no continuation to be valid in the critical strip, can be easily determined. The imaginary parts of these zeros have a deep and reciprocal relationship with the odd primes and odd prime powers. This relationship separates the odd primes into those having either 1 or 3 as a remainder after division by 4. The vector pathway of the beta function is such that the real part of its zeros has to be a half.


2020 ◽  
Vol 2020 ◽  
pp. 1-29
Author(s):  
Michael Milgram

Two identities extracted from the literature are coupled to obtain an integral equation for Riemann’s ξs function and thus ζs indirectly. The equation has a number of simple properties from which useful derivations flow, the most notable of which relates ζs anywhere in the critical strip to its values on a line anywhere else in the complex plane. From this, both an analytic expression for ζσ+it, everywhere inside the asymptotic t⟶∞ critical strip, as well as an approximate solution can be obtained, within the confines of which the Riemann Hypothesis is shown to be true. The approximate solution predicts a simple, but strong correlation between the real and imaginary components of ζσ+it for different values of σ and equal values of t; this is illustrated in a number of figures.



2019 ◽  
Vol 210 (12) ◽  
pp. 1753-1773 ◽  
Author(s):  
A. Laurinčikas ◽  
J. Petuškinaitė


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
WonTae Hwang ◽  
Kyunghwan Song

Abstract We prove that the integer part of the reciprocal of the tail of $\zeta (s)$ ζ ( s ) at a rational number $s=\frac{1}{p}$ s = 1 p for any integer with $p \geq 5$ p ≥ 5 or $s=\frac{2}{p}$ s = 2 p for any odd integer with $p \geq 5$ p ≥ 5 can be described essentially as the integer part of an explicit quantity corresponding to it. To deal with the case when $s=\frac{2}{p}$ s = 2 p , we use a result on the finiteness of integral points of certain curves over $\mathbb{Q}$ Q .



2010 ◽  
Vol 06 (08) ◽  
pp. 1933-1944 ◽  
Author(s):  
SANDRO BETTIN

We prove an asymptotic formula for the second moment (up to height T) of the Riemann zeta function with two shifts. The case we deal with is where the real parts of the shifts are very close to zero and the imaginary parts can grow up to T2-ε, for any ε > 0.



Information ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 483
Author(s):  
Michel Riguidel

From the functional equation of Riemann’s zeta function, this article gives new insight into Hadamard’s product formula. The function and its family of associated functions, expressed as a sum of rational fractions, are interpreted as meromorphic functions whose poles are the poles and zeros of the function. This family is a mathematical and numerical tool which makes it possible to estimate the value of the function at a point in the critical strip from a point on the critical line .Generating estimates of at a given point requires a large number of adjacent zeros, due to the slow convergence of the series. The process allows a numerical approach of the Riemann hypothesis (RH). The method can be extended to other meromorphic functions, in the neighborhood of isolated zeros, inspired by the Weierstraß canonical form. A final and brief comparison is made with the and functions over finite fields.



Author(s):  
Gauhar Rahman ◽  
KS Nisar ◽  
Shahid Mubeen

In this paper, we define a (p,v)-extension of Hurwitz-Lerch Zeta function by considering an extension of beta function defined by Parmar et al. [J. Classical Anal. 11 (2017) 81–106]. We obtain its basic properties which include integral representations, Mellin transformation, derivative formulas and certain generating relations. Also, we establish the special cases of the main results.



2020 ◽  
Vol 295 (45) ◽  
pp. 15376-15377
Author(s):  
Joseph M. Jez

The deep relationship between plants and humans predates civilization, and our reliance on plants as sources of food, feed, fiber, fuels, and pharmaceuticals continues to increase. Understanding how plants grow and overcome challenges to their survival is critical for using these organisms to meet current and future demands for food and other plant-derived materials. This thematic review series on “plants in the real world” presents a set of eight reviews that highlight advances in understanding plant health, including the role of thiamine (vitamin B1), iron, and the plant immune system; how plants use ethylene and ubiquitin systems to control growth and development; and how new gene-editing approaches, the redesign of plant cell walls, and deciphering herbicide resistance evolution can lead to the next generation of crops.



Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 285
Author(s):  
Michel Riguidel

This article proposes a morphogenesis interpretation of the zeta function by computational approach by relying on numerical approximation formulae between the terms and the partial sums of the series, divergent in the critical strip. The goal is to exhibit structuring properties of the partial sums of the raw series by highlighting their morphogenesis, thanks to the elementary functions constituting the terms of the real and imaginary parts of the series, namely the logarithmic, cosine, sine, and power functions. Two essential indices of these sums appear: the index of no return of the vagrancy and the index of smothering of the function before the resumption of amplification of its divergence when the index tends towards infinity. The method consists of calculating, displaying graphically in 2D and 3D, and correlating, according to the index, the angles, the terms and the partial sums, in three nested domains: the critical strip, the critical line, and the set of non-trivial zeros on this line. Characteristics and approximation formulae are thus identified for the three domains. These formulae make it possible to grasp the morphogenetic foundations of the Riemann hypothesis (RH) and sketch the architecture of a more formal proof.



Sign in / Sign up

Export Citation Format

Share Document