A comparative study of energetics of ferrocenium and ferrocene
Ferrocenium (Fc+) inherits a number of molecular/electronic properties from the neutral counterparts’ ferrocene (Fc) including the high symmetry. Both Fc+ and Fc prefer the eclipsed structure (D5h) over the staggered structure (D5d) by an energy of 0.36 kcal·mol-1. The present study using the recently developed excess orbital energy spectrum (EOES) shows that the open shell Fc+ cation exhibits similar conformer dependent configurational changes to the neutral Fc conformer pair. A further energy decomposition analysis (EDA) discloses that the reasons for the preferred structures are different between Fc+ and Fc. The dominant differentiating energy between the Fc+ conformers is the electrostatic energy (EEstat), whereas in neutral Fc, it is the quantum mechanical Pauli repulsive energy (EPauli). Within the D5h conformer of Fc+, the EOES reveals that the -electrons of Fc+ experience more substantial conformer dependent energy changes than the -electrons (assumed the hole is in a β orbital).