scholarly journals Harnessing the Exchange Interaction for Quantum Information Processing

Author(s):  
Mrittunjoy Guha Majumdar

In this paper, I propose new models of quantum information processing using the exchange interaction in physical systems. The partial SWAP operator that can be realized using the exchange interaction is used as the underlying resource for defining models of quantum computation, quantum communication, quantum memory and decoherence-free subspaces. Given the non-commutativity of these operators (for adjacent operators operating on a common qubit), a number of quantum states and entanglement patters can be obtained. This zoo of states can be classified, due to the parity constraints and permutation symmetry of the states, into invariant subspaces that are used for the definition of some of the applications in this paper.

2002 ◽  
Vol 2 (1) ◽  
pp. 1-13
Author(s):  
S.J. van Enk ◽  
H.J. Kimble

Control fields in quantum information processing are almost by definition assumed to be classical. In reality, however, when such a field is used to manipulate the quantum state of qubits, the qubits always become slightly entangled with the field. For quantum information processing this is an undesirable property, as it precludes perfect quantum computing and quantum communication. Here we consider the interaction of atomic qubits with laser fields and quantify atom-field entanglement in various cases of interest. We find that the entanglement decreases with the average number of photons \bar{n} in a laser beam as $E\propto\log_2 \bar{n}/\bar{n}$ for $\bar{n}\rightarrow\infty$.


Author(s):  
I.I. Ryabtsev ◽  
S.P. Yurkevichyus ◽  
A.E. Gritsenko

Scientific and technological problems and prospects for creating quantum communication systems are herein outlined. A brief analysis of the state of scientific research in this area abroad is carried out. The strengths and weaknesses of the implementation of quantum information processing technology are reflected.


2003 ◽  
Vol 01 (04) ◽  
pp. 427-441 ◽  
Author(s):  
JOHN A. VACCARO ◽  
FABIO ANSELMI ◽  
HOWARD M. WISEMAN

We have recently introduced a measure of the bipartite entanglement of identical particles, E P , based on the principle that entanglement should be accessible for use as a resource in quantum information processing. We show here that particle entanglement is limited by the lack of a reference phase shared by the two parties, and that the entanglement is constrained to reference-phase invariant subspaces. The super-additivity of E P results from the fact that this constraint is weaker for combined systems. A shared reference phase can only be established by transferring particles between the parties, that is, with additional nonlocal resources. We show how this nonlocal operation can increase the particle entanglement.


2001 ◽  
Author(s):  
David P. DiVincenzo ◽  
Charles H. Bennett

Sign in / Sign up

Export Citation Format

Share Document