scholarly journals Synchronized Molecular-Dynamics Simulation of the Thermal Lubrication of an Entangled Polymeric Liquid

Author(s):  
Shugo Yasuda

The thermal lubrication of an entangled polymeric liquid in wall-driven shear flows between parallel plates is investigated by using a multiscale hybrid method coupling molecular dynamics and the hydrodynamics (i.e., the synchronized molecular dynamics method). The temperature of the polymeric liquid rapidly increases due to viscous heating once the drive force exceeds a certain threshold value. The rheological properties of the polymeric liquid drastically change at around the critical drive force. In the weak viscous-heating regime, the conformation of polymer chains is dominated by the local shear flow so that the anisotropy of the bond orientation tensor grows as the drive force increases. However, in the large viscous-heating regime, the conformation dynamics is dominated by the thermal agitation of polymer chains so that the bond orientation tensor recovers more uniform and random structures as the drive force increases, even though the local shear flows are further enhanced. Remarkably, these counter-intuitive transitional behaviors give an interesting re-entrant transition in the stress--optical relation, where a linear formalism in the stress--optical relation approximately holds even though each of the macroscopic quantities behaves nonlinearly. The robustness of the linear stress--optical relation is also confirmed in the spatiotemporal evolution at the hydrodynamic level.

Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 131 ◽  
Author(s):  
Shugo Yasuda

The thermal lubrication of an entangled polymeric liquid in wall-driven shear flows between parallel plates is investigated by using a multiscale hybrid method, coupling molecular dynamics and hydrodynamics (i.e., the synchronized molecular dynamics method). The temperature of the polymeric liquid rapidly increases due to viscous heating once the drive force exceeds a certain threshold value, and the rheological properties drastically change at around the critical drive force. In the weak viscous-heating regime, the conformation of polymer chains is dominated by the flow field so that the polymers are more elongated as the drive force increases. However, in the large viscous-heating regime, the conformation dynamics is dominated by the thermal agitation of polymer chains so that the conformation of polymers recovers more uniform and random structures as the drive force increases, even though the local shear flows are further enhanced. Remarkably, this counter-intuitive transitional behavior gives an interesting re-entrant transition in the stress–optical relation, where the linear stress–optical relation approximately holds even though each of the macroscopic quantities behaves nonlinearly. Furthermore, the shear thickening behavior is also observed in the large viscous-heating regime—this was not observed in a series of previous studies on an unentangled polymer fluid. This qualitative difference of the thermo-rheological property between the entangled and unentangled polymer fluids gives completely different velocity profiles in the thermal lubrication system.


1996 ◽  
Vol 104 (12) ◽  
pp. 4806-4813 ◽  
Author(s):  
E. Yu. Kramarenko ◽  
R. G. Winkler ◽  
P. G. Khalatur ◽  
A. R. Khokhlov ◽  
P. Reineker

2010 ◽  
Vol 09 (05) ◽  
pp. 889-902 ◽  
Author(s):  
SHU-GUANG ZHANG ◽  
FENG-YUN WANG ◽  
XIAO-YAO TAN

Molecular dynamics (MD) method was used to simulate the interaction between water-soluble polymers, such as polyacrylic acid (PAA), polymethylacrylic acid (PMAA), acrylic acid-methylacrylate copolymer (AA-MAE), acrylic acid-hydroxypropyl acrylate copolymer (AA-HPA), hydrolyzed polymaleic anhydride (HPMA), acrylic acid-maleic acid copolymer (AA-MA), and hydroxyapatite crystal. The sequence of binding energies of polymers binding with the (100) crystal surface of hydroxyapatite was as follows: AA-HPA > AA-MA > HPMA > PAA > AA-MAE > PMAA. After analyzing various energy components and pair correlation functions of all systems, it could be concluded that binding energies were mainly determined by Coulomb interaction. Polymers deformed during their combining with the hydroxyapatite crystal, but all the deformation energies were far less than respective nonbond energies. The dynamics behavior of carboxyls located at different positions of the polymer chains manifested different features during the processes of MD runs. Carboxyls at the ends of the polymer chains oscillated more acutely than those in the middle of the chains; therefore, the latter ones inhibited scale crystal growth more effectively than the former ones because they combined with hydroxyapatite crystal more firmly.


2019 ◽  
Vol 21 (38) ◽  
pp. 21615-21625 ◽  
Author(s):  
Naveed Athir ◽  
Ling Shi ◽  
Sayyed Asim Ali Shah ◽  
Zhiyu Zhang ◽  
Jue Cheng ◽  
...  

Coarse-grained (CG) molecular dynamics simulations have been employed to study the thermo-mechanical response of a physically cross-linked network composed of zwitterionic moieties and fully flexible elastomeric polymer chains.


Sign in / Sign up

Export Citation Format

Share Document