scholarly journals Microscopic Change in Hardened Cement Paste Due to High-Speed Impact

Author(s):  
Yuya Sakai ◽  
Ivwananji Sikombe ◽  
Keiko Watanabe ◽  
Hiroyuki Inoue

Impact load was applied to hardened cement paste (HCP) specimens using a gas gun to investigate microscopic changes in the specimens and develop a better response model of concrete subjected to impact load. Plasma emission was observed at the moment of impact at 420 m/s and the colour of the portion near the impact point turned brighter. This brighter portion was analysed, and it was observed that the pore structure was coarser compared to the other portion; however, the results of thermogravimetry and X-ray diffraction analysis were similar. A possible reason is that the generated heat was instantaneous and the rate of the temperature increase in the HCP decreased due to evaporation of water in the HCP. These results indicate that during impact at a few hundred m/s, porosity increase due to heat effect is more dominant than porosity decrease due to mechanical compaction.

2019 ◽  
Vol 17 (9) ◽  
pp. 518-525
Author(s):  
Yuya Sakai ◽  
Ivwananji Sikombe ◽  
Keiko Watanabe ◽  
Hiroyuki Inoue

2019 ◽  
Vol 72 (1) ◽  
pp. 77-82
Author(s):  
Yuya SAKAI ◽  
Ivwananji SIKOMBE ◽  
Keiko WATANABE

2013 ◽  
Vol 5 (5) ◽  
pp. 530-535
Author(s):  
Lukas Venčkauskas ◽  
Mindaugas Daukšys

The conducted research has established a complex influenceand the impact of separate chemical admixtures of differentpurpose on the parameters of the porosity of hardened cementpaste such as open and closed porosity, the average size of poresand the rates of pore inequality. According to the parametersof the porosity of hardened cement paste, on the basis of A. E.Sheikin’s methodology, the number of freezing-thawing cycleswas predicted. This research used plasticizing, viscosity modifyingand antifoaming admixtures. It has been found that, when theamount of plasticizing admixture in cement paste (W/C–0.45) isconstant and makes 1.1% of the cement mass, and the amountof viscosity modifying and antifoaming the admixture increasesfrom 0.1 to 0.6% and from 0.05 to 0.3% respectively, the openporosity of hardened cement paste varies between 30.21% and31.06%, while closed porosity varies between 5.39% and 6.22%.When the amount of the plasticizing admixture in cement paste(W/C–0.45) exceeds 1.1% of the cement mass, the open porosityof hardened cement paste increases by 1.4 times and closedporosity decreases by 2.5 times. While adding 0.1% of the viscositymodifying admixture to cement paste, the open porosityof hardened cement paste is increased by 1.5 times and closedporosity decreases by 2.4 times. The amount of 0.05% of thecement mass of the antifoaming admixture results in the increasedopen porosity of hardened cement paste by 1.5 times and reducedclosed porosity by 3.5 times. Santrauka Tyrimo metu nustatyta kompleksinė bei atskirų skirtingos paskirties cheminių priedų įtaka cementinio akmens poringumo rodikliams – atvirajam ir uždarajam poringumui, vidutinio porų dydžio ir porų vienodumo rodikliams. Tyrimuose naudoti cheminiai priedai: plastifikuojantis, klampą modifikuojantis ir mišinyje susiformavusias oro poras suardantis priedas. Nustatyta, kad cemento tešloje (V/C – 0,45) esant pastoviam plastifikuojančio priedo kiekiui – 1,0 % cemento masės, klampą modifikuojančio priedo kiekiui kintant nuo 0,1 iki 0,6 %, o mišinyje susiformavusias oro poras suardančio priedo kiekiui kintant nuo 0,05 iki 0,3 %, cementinio akmens atvirasis poringumas svyruoja nuo 30,21 iki 31,06 %, o uždarasis – nuo 5,39 iki 6,22 %. Cemento tešloje viršijus plastifikuojančio priedo 1,1 % cemento masės, cementinio akmens atvirasis poringumas padidėja apie 1,4 karto, o uždarasis poringumas sumažėja apie 2,5 karto. Pridėjus į tešlą 0,1 % cemento masės klampą modifikuojančio priedo, cementinio akmens atvirasis poringumas padidėja apie 1,5 karto, uždarasis poringumas sumažėja apie 2,4 karto. Oro poras suardančio priedo kiekis 0,05 % cemento masės cementinio akmens atvirąjį poringumą padidina apie 1,5 karto, uždarąjį poringumą sumažina apie 3,5 karto.


2018 ◽  
Vol 172 ◽  
pp. 553-561 ◽  
Author(s):  
Jurgita Malaiskiene ◽  
Olga Kizinievic ◽  
Viktor Kizinievic ◽  
Renata Boris

1988 ◽  
Vol 137 ◽  
Author(s):  
M. L. Brown ◽  
W. B. Ledbetter ◽  
H. M. Jennings

AbstractThe influence of shear mixing on selected properties of cement pastes and mortars was investigated by preparing specimens using an ordinary paddle mixer and a high speed shear mixer. The results appear to indicate that shear mixing influences the bond between paste and aggregate, particularily at low water:cement ratios. The properties of hardened cement paste did not change markedly as a result of high speed shear mixing used in this initial study.


1985 ◽  
Vol 64 ◽  
Author(s):  
Sidney Mindess ◽  
Nemy P. Banthia ◽  
Andrew Ritter ◽  
Jan P. Skalny

ABSTRACTFlexural specimens of hardened cement paste, fibre reinforced concrete, and conventionally reinforced concrete were tested in an instrumented dropweight impact machine, employing a 345 kg mass impact hammer dropped from a height of 500 mm. The crack development in the specimens was monitored using high speed motion picture photography, carried out at about 10,000 frames per second. It was found that, for all three specimens, some crack branching occurred. The cracks did not propagate in a continuous fashion; they appeared to arrest occasionally, and then began to grow again. However, it appeared as if the crack velocities reached a maximum value very soon after the impact occurred; they then decreased, and finally increased again just prior to failure. The average crack velocities were in the range of about 75 to 115 m/s.


Author(s):  
Yidong Gan ◽  
Hongzhi Zhang ◽  
Minfei Liang ◽  
Erik Schlangen ◽  
Klaas van Breugel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document