scholarly journals Mitigating Pilot Contamination with Scrambling Sequences

Author(s):  
Felipe Augusto Pereira de Figueiredo

In this letter, we advocate that it is possible to mitigate Pilot Contamination in Massive MIMO systems by scrambling the pilot sequences with a Base Station (BS) scrambling sequence. It is possible if a set of sequences is carefully designed to meet the orthogonality property defined in this letter. Each BS possesses its own scrambling sequence that can be reused the same way frequency reuse is applied to cell deployment. The main advantage of the prosed pilot generation scheme is that the frequency reuse factor can be set to 1, the most aggressive one, while the scrambling sequences can be reused with much less aggressive reuse factors (e.g. 4, 7, 9, 12, etc.), which in consequence results in pilot contamination mitigation and increased system's performance.

Author(s):  
Felipe Augusto Pereira de Figueiredo ◽  
Claudio Ferreira Dias ◽  
Fabbryccio A. C. M. Cardoso ◽  
Gustavo Fraidenraich

Accurate channel estimation is of utmost importance for massive MIMO systems to provide significant improvements in spectral and energy efficiency. In this work, we present a study on the distribution of a simple but yet effective and practical channel estimator for multi-cell massive MIMO systems suffering from pilot-contamination. The proposed channel estimator performs well under moderate to aggressive pilot contamination scenarios without previous knowledge of the inter-cell large-scale channel coefficients and noise power, asymptotically approximating the performance of the linear MMSE estimator as the number of antennas increases. We prove that the distribution of the proposed channel estimator can be accurately approximated by the circularly-symmetric complex normal distribution, when the number of antennas, M, deployed at the base station is greater than 10.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Xingwang Li ◽  
Lihua Li ◽  
Ling Xie ◽  
Xin Su ◽  
Ping Zhang

Massive MIMO have drawn considerable attention as they enable significant capacity and coverage improvement in wireless cellular network. However, pilot contamination is a great challenge in massive MIMO systems. Under this circumstance, cooperation and three-dimensional (3D) MIMO are emerging technologies to eliminate the pilot contamination and to enhance the performance relative to the traditional interference-limited implementations. Motivated by this, we investigate the achievable sum rate performance of MIMO systems in the uplink employing cooperative base station (BS) and 3D MIMO systems. In our model, we consider the effects of both large-scale and small-scale fading, as well as the spatial correlation and indoor-to-outdoor high-rise propagation environment. In particular, we investigate the cooperative communication model based on 3D MIMO and propose a closed-form lower bound on the sum rate. Utilizing this bound, we pursue a “large-system” analysis and provide the asymptotic expression when the number of antennas at the BS grows large, and when the numbers of antennas at transceiver grow large with a fixed ratio. We demonstrate that the lower bound is very tight and becomes exact in the massive MIMO system limits. Finally, under the sum rate maximization condition, we derive the optimal number of UTs to be served.


Aiming at the problem of massive MIMO pilot contamination, a user location information based pilot allocation scheme is proposed. The proposed scheme sorts the users and assigns pilots in accordance to the polar angle of the user's location in the polar coordinate system with the base station of the cell as the pole. The scheme combines the characteristics of the directional large line, and by controlling the reuse distance of the pilots in a relatively long range, the goals of reducing pilot contamination is improving system reachability and speed. Simulation results show that the proposed scheme not only effectively reduce pilot contamination among users, but also improves the performance gap between different users with the improved system fairness


2021 ◽  
Author(s):  
Seyedeh Samira Moosavi ◽  
Paul Fortier

Abstract Currently, localization in distributed massive MIMO (DM-MIMO) systems based on the fingerprinting (FP) approach has attracted great interest. However, this method suffers from severe multipath and signal degradation such that its accuracy is deteriorated in complex propagation environments, which results in variable received signal strength (RSS). Therefore, providing robust and accurate localization is the goal of this work. In this paper, we propose an FP-based approach to improve the accuracy of localization by reducing the noise and the dimensions of the RSS data. In the proposed approach, the fingerprints rely solely on the RSS from the single-antenna MT collected at each of the receive antenna elements of the massive MIMO base station. After creating a radio map, principal component analysis (PCA) is performed to reduce the noise and redundancy. PCA reduces the data dimension which leads to the selection of the appropriate antennas and reduces complexity. A clustering algorithm based on K-means and affinity propagation clustering (APC) is employed to divide the whole area into several regions which improves positioning precision and reduces complexity and latency. Finally, in order to have high precise localization estimation, all similar data in each cluster are modeled using a well-designed deep neural network (DNN) regression. Simulation results show that the proposed scheme improves positioning accuracy significantly. This approach has high coverage and improves average root-mean-squared error (RMSE) performance to a few meters, which is expected in 5G and beyond networks. Consequently, it also proves the superiority of the proposed method over the previous location estimation schemes.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 980 ◽  
Author(s):  
Hui Feng ◽  
Xiaoqing Zhao ◽  
Zhengquan Li ◽  
Song Xing

In this paper, a novel iterative discrete estimation (IDE) algorithm, which is called the modified IDE (MIDE), is proposed to reduce the computational complexity in MIMO detection in uplink massive MIMO systems. MIDE is a revision of the alternating direction method of multipliers (ADMM)-based algorithm, in which a self-updating method is designed with the damping factor estimated and updated at each iteration based on the Euclidean distance between the iterative solutions of the IDE-based algorithm in order to accelerate the algorithm’s convergence. Compared to the existing ADMM-based detection algorithm, the overall computational complexity of the proposed MIDE algorithm is reduced from O N t 3 + O N r N t 2 to O N t 2 + O N r N t in terms of the number of complex-valued multiplications, where Ntand Nr are the number of users and the number of receiving antennas at the base station (BS), respectively. Simulation results show that the proposed MIDE algorithm performs better in terms of the bit error rate (BER) than some recently-proposed approximation algorithms in MIMO detection of uplink massive MIMO systems.


Sign in / Sign up

Export Citation Format

Share Document