scholarly journals Multi-Band Frequency Window for Time-Frequency Fault Diagnosis of Induction Machines

Author(s):  
Jordi Burriel-Valencia ◽  
Ruben Puche-Panadero ◽  
Javier Martinez-Roman ◽  
Angel Sapena-Bano ◽  
Martin Riera-Guasp ◽  
...  

Induction machines drive many industrial processes, and their unexpected failure can cause heavy production losses. The analysis of the current spectrum can identify online the characteristic fault signatures at an early stage, avoiding unexpected breakdowns. Nevertheless, frequency domain analysis requires stable working conditions, which is not the case for wind generators, motors driving varying loads, etc. In these cases an analysis in the time-frequency domain -such as a spectrogram- is required for detecting faults signatures. The spectrogram is built using the short frequency Fourier transform, but its resolution depends critically on the time window used to generate it: short windows provide good time resolution, but poor frequency resolution, just the opposite than long windows. Therefore, the window must be adapted at each time to the shape of the expected fault harmonics, by highly skilled maintenance personnel. In this paper, this problem is solved with the design of a new multi-band window, which generates simultaneously many different narrow-band current spectrograms, and combines them into a single, high resolution one, without the need of manual adjustments. The proposed method is validated with the diagnosis of bar breakages during the start-up of a commercial induction motor.

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3361 ◽  
Author(s):  
Jordi Burriel-Valencia ◽  
Ruben Puche-Panadero ◽  
Javier Martinez-Roman ◽  
Angel Sapena-Baño ◽  
Martin Riera-Guasp ◽  
...  

Induction machines drive many industrial processes and their unexpected failure can cause heavy production losses. The analysis of the current spectrum can identify online the characteristic fault signatures at an early stage, avoiding unexpected breakdowns. Nevertheless, frequency domain analysis requires stable working conditions, which is not the case for wind generators, motors driving varying loads, and so forth. In these cases, an analysis in the time-frequency domain—such as a spectrogram—is required for detecting faults signatures. The spectrogram is built using the short time Fourier transform, but its resolution depends critically on the time window used to generate it—short windows provide good time resolution but poor frequency resolution, just the opposite than long windows. Therefore, the window must be adapted at each time to the shape of the expected fault harmonics, by highly skilled maintenance personnel. In this paper this problem is solved with the design of a new multi-band window, which generates simultaneously many different narrow-band current spectrograms and combines them into as single, high resolution one, without the need of manual adjustments. The proposed method is validated with the diagnosis of bar breakages during the start-up of a commercial induction motor.


2021 ◽  
Author(s):  
◽  
Jiawen Chua

<p>In most real-time systems, particularly for applications involving system identification, latency is a critical issue. These applications include, but are not limited to, blind source separation (BSS), beamforming, speech dereverberation, acoustic echo cancellation and channel equalization. The system latency consists of an algorithmic delay and an estimation computational time. The latter can be avoided by using a multi-thread system, which runs the estimation process and the processing procedure simultaneously. The former, which consists of a delay of one window length, is usually unavoidable for the frequency-domain approaches. For frequency-domain approaches, a block of data is acquired by using a window, transformed and processed in the frequency domain, and recovered back to the time domain by using an overlap-add technique.  In the frequency domain, the convolutive model, which is usually used to describe the process of a linear time-invariant (LTI) system, can be represented by a series of multiplicative models to facilitate estimation. To implement frequency-domain approaches in real-time applications, the short-time Fourier transform (STFT) is commonly used. The window used in the STFT must be at least twice the room impulse response which is long, so that the multiplicative model is sufficiently accurate. The delay constraint caused by the associated blockwise processing window length makes most the frequency-domain approaches inapplicable for real-time systems.  This thesis aims to design a BSS system that can be used in a real-time scenario with minimal latency. Existing BSS approaches can be integrated into our system to perform source separation with low delay without affecting the separation performance. The second goal is to design a BSS system that can perform source separation in a non-stationary environment.  We first introduce a subspace approach to directly estimate the separation parameters in the low-frequency-resolution time-frequency (LFRTF) domain. In the LFRTF domain, a shorter window is used to reduce the algorithmic delay of the system during the signal acquisition, e.g., the window length is shorter than the room impulse response. The subspace method facilitates the deconvolution of a convolutive mixture to a new instantaneous mixture and simplifies the estimation process.  Second, we propose an alternative approach to address the algorithmic latency problem. The alternative method enables us to obtain the separation parameters in the LFRTF domain based on parameters estimated in the high-frequency-resolution time-frequency (HFRTF) domain, where the window length is longer than the room impulse response, without affecting the separation performance.  The thesis also provides a solution to address the BSS problem in a non-stationary environment. We utilize the ``meta-information" that is obtained from previous BSS operations to facilitate the separation in the future without performing the entire BSS process again. Repeating a BSS process can be computationally expensive. Most conventional BSS algorithms require sufficient signal samples to perform analysis and this prolongs the estimation delay. By utilizing information from the entire spectrum, our method enables us to update the separation parameters with only a single snapshot of observation data. Hence, our method minimizes the estimation period, reduces the redundancy and improves the efficacy of the system.  The final contribution of the thesis is a non-iterative method for impulse response shortening. This method allows us to use a shorter representation to approximate the long impulse response. It further improves the computational efficiency of the algorithm and yet achieves satisfactory performance.</p>


2016 ◽  
Vol 836-837 ◽  
pp. 310-317 ◽  
Author(s):  
Song Tao Xi ◽  
Hong Rui Cao ◽  
Xue Feng Chen

Instantaneous speed (IS) is of great significance of fault diagnosis and condition monitoring of the high speed spindle. In this paper, we propose a novel zoom synchrosqueezing transform (ZST) for IS estimation of the high speed spindle. Due to the limitation of the Heisenberg uncertainty principle, the conventional time-frequency analysis (TFA) methods cannot provide both good time and frequency resolution at the whole frequency region. Moreover, in most cases, the interested frequency component of a signal only locates in a narrow frequency region, so there is no need to analyze the signal in the whole frequency region. Different from conventional TFA methods, the proposed method arms to analyze the signal in a specific frequency region with both excellent time and frequency resolution so as to obtain accurate instantaneous frequency (IF) estimation results. The proposed ZST is an improvement of the synchrosqueezing wavelet transform (SWT) and consists of two steps, i.e., the frequency-shift operation and the partial zoom synchrosqueezing operation. The frequency-shift operation is to shift the interested frequency component from the lower frequency region to the higher frequency to obtain better time resolution. The partial zoom synchrosqueezing operation is conducted to analyze the shifted signal with excellent frequency resolution in a considered frequency region. Compared with SWT, the proposed method can provide satisfactory energy concentrated time-frequency representation (TFR) and accurate IF estimation results. Additionally, an application of the proposed ZST to the IS fluctuation estimation of a motorized spindle was conducted, and the result showed that the IS estimated by the proposed ZST can be used to detect the quality of the finished workpiece surface.


2007 ◽  
Vol 23 (1) ◽  
pp. 15-21 ◽  
Author(s):  
S.-H. Ni ◽  
J.-J. Charng ◽  
K.-F. Lo

AbstractThe Wigner-Ville Distribution is a new numerical analysis tool for signal process technique in the time-frequency domain and it can offer assistance and enhance signal characteristics for better resolution both easily and quickly. Time-frequency transform can describe how a spectrum of signals changes with time owing to defects and boundary conditions. In this study, five single pre-cast concrete piles have been tested and evaluated by both sonic echo method and Wigner-Ville distribution (WVD). The appropriateness of time-frequency domain analysis is discussed. Furthermore, two difficult problems in nondestructive evaluation problems are discussed and solved: the first one is with a pile with slight defect, whose necking area percentage is less than 10%, and the other is a pile with multiple defects. The results show that WVD can not only recognize the characteristics easily, but also locate the defects more clearly than the traditional pile integrity testing method.


2012 ◽  
Vol 442 ◽  
pp. 305-308
Author(s):  
Jian Wei Li ◽  
Ling Wang ◽  
Hong Mei Zhang

It is often needed in engineering that detecting and analyzing vibration signal of some equipment. To meet the requirement, a portable detecting and analytic instrument was designed using virtual instrument concept. In the instrument, notebook computer was used as the platform of hardware. Vibration signal was obtained by integrated piezoelectric acceleration sensor (DTS0104T), and was transferred to a notebook computer through data acquisition card (NI USB-6210) based on USB bus. The software, running on the notebook computer, was developed under LabVIEW. Vibration signal could be displayed on screen, recorded in disk or printed by printer, retrieved, and analyzed. The analysis functions of the instrument include: time-domain analysis, frequency-domain analysis, time-frequency domain analysis, and correlation analysis. The instrument is compact, portable, powerful, and with friendly interfaces, has broad application prospects.


Sign in / Sign up

Export Citation Format

Share Document