scholarly journals Improving Center Vortex Detection by Usage of Center Regions as Guidance for the Direct Maximal Center Gauge

Author(s):  
Rudolf Golubich ◽  
Manfried Faber

The center vortex model of quantum chromodynamic states that vortices, closed color-magnetic flux, percolate the vacuum. Vortices are seen as the relevant excitations of the vacuum, causing confinement and dynamical chiral symmetry breaking. In an appropriate gauge, as direct maximal center gauge, vortices are detected by projecting onto the center degrees of freedom. Such gauges suffer from Gribov copy problems: different local maxima of the corresponding gauge functional can result in different predictions of the string tension. By using non-trivial center regions, that is, regions whose boundary evaluates to a non-trivial center element, a resolution of this issue seems possible. We use such non-trivial center regions to guide simulated annealing procedures, preventing an underestimation of the string tension in order to resolve the Gribov copy problem.

Particles ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 491-498 ◽  
Author(s):  
Rudolf Golubich ◽  
Manfried Faber

The center vortex model of quantum chromodynamic states that vortices, a closed color-magnetic flux, percolate the vacuum. Vortices are seen as the relevant excitations of the vacuum, causing confinement and dynamical chiral symmetry breaking. In an appropriate gauge, as direct maximal center gauge, vortices are detected by projecting onto the center degrees of freedom. Such gauges suffer from Gribov copy problems: different local maxima of the corresponding gauge functional can result in different predictions of the string tension. By using nontrivial center regions—that is, regions whose boundary evaluates to a nontrivial center element—a resolution of this issue seems possible. We use such nontrivial center regions to guide simulated annealing procedures, preventing an underestimation of the string tension in order to resolve the Gribov copy problem.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 122
Author(s):  
Rudolf Golubich ◽  
Manfried Faber

The center vortex model of quantum-chromodynamics can explain confinement and chiral symmetry breaking. We present a possible resolution for problems of the vortex detection in smooth configurations and discuss improvements for the detection of center vortices.


Author(s):  
Rudolf Golubich ◽  
Manfried Faber

The center vortex model of quantum-chromodynamics can explain confinement and chiral symmetry breaking. We present a possible resolution for problems of the vortex detection in smooth configurations and discuss improvements for the detection of center vortices.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 253
Author(s):  
David R. Junior ◽  
Luis E. Oxman ◽  
Gustavo M. Simões

In this review, we discuss the present status of the description of confining flux tubes in SU(N) pure Yang–Mills theory in terms of ensembles of percolating center vortices. This is based on three main pillars: modeling in the continuum the ensemble components detected in the lattice, the derivation of effective field representations, and contrasting the associated properties with Monte Carlo lattice results. The integration of the present knowledge about these points is essential to get closer to a unified physical picture for confinement. Here, we shall emphasize the last advances, which point to the importance of including the non-oriented center-vortex component and non-Abelian degrees of freedom when modeling the center-vortex ensemble measure. These inputs are responsible for the emergence of topological solitons and the possibility of accommodating the asymptotic scaling properties of the confining string tension.


2017 ◽  
Vol 376 ◽  
pp. 145-152 ◽  
Author(s):  
Alireza Ahmadi ◽  
Shahnoosh Rafibakhsh

Author(s):  
Zeinab Dehghan ◽  
Sedigheh Deldar ◽  
Manfried Faber ◽  
Rudolf Golubich ◽  
Roman Höllwieser

Gauge fields control the dynamics of fermions, also a back reaction of fermions on the gauge field is expected. This back reaction is investigated within the vortex picture of the QCD vacuum. We show that the center vortex model reproduces the string tension of the full theory also with the presence of fermionic fields.


2000 ◽  
Vol 585 (3) ◽  
pp. 591-613 ◽  
Author(s):  
M. Engelhardt ◽  
H. Reinhardt

2013 ◽  
Vol 22 (06) ◽  
pp. 1330015 ◽  
Author(s):  
I. G. Aznauryan ◽  
A. Bashir ◽  
V. M. Braun ◽  
S. J. Brodsky ◽  
V. D. Burkert ◽  
...  

Studies of the structure of excited baryons are key factors to the N* program at Jefferson Lab (JLab). Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q2. This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever achieved, with a kinematic reach up to Q2 = 12 GeV 2. This high-Q2 reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with Quantum Chromodynamics (QCD)-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the nonperturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
H. Reinhardt ◽  
G. Burgio ◽  
D. Campagnari ◽  
E. Ebadati ◽  
J. Heffner ◽  
...  

We report on recent results obtained within the Hamiltonian approach to QCD in Coulomb gauge. Furthermore this approach is compared to recent lattice data, which were obtained by an alternative gauge-fixing method and which show an improved agreement with the continuum results. By relating the Gribov confinement scenario to the center vortex picture of confinement, it is shown that the Coulomb string tension is tied to the spatial string tension. For the quark sector, a vacuum wave functional is used which explicitly contains the coupling of the quarks to the transverse gluons and which results in variational equations which are free of ultraviolet divergences. The variational approach is extended to finite temperatures by compactifying a spatial dimension. The effective potential of the Polyakov loop is evaluated from the zero-temperature variational solution. For pure Yang–Mills theory, the deconfinement phase transition is found to be second order for SU(2) and first order for SU(3), in agreement with the lattice results. The corresponding critical temperatures are found to be 275 MeV and 280 MeV, respectively. When quarks are included, the deconfinement transition turns into a crossover. From the dual and chiral quark condensate, one finds pseudocritical temperatures of 198 MeV and 170 MeV, respectively, for the deconfinement and chiral transition.


Sign in / Sign up

Export Citation Format

Share Document