scholarly journals From Center-Vortex Ensembles to the Confining Flux Tube

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 253
Author(s):  
David R. Junior ◽  
Luis E. Oxman ◽  
Gustavo M. Simões

In this review, we discuss the present status of the description of confining flux tubes in SU(N) pure Yang–Mills theory in terms of ensembles of percolating center vortices. This is based on three main pillars: modeling in the continuum the ensemble components detected in the lattice, the derivation of effective field representations, and contrasting the associated properties with Monte Carlo lattice results. The integration of the present knowledge about these points is essential to get closer to a unified physical picture for confinement. Here, we shall emphasize the last advances, which point to the importance of including the non-oriented center-vortex component and non-Abelian degrees of freedom when modeling the center-vortex ensemble measure. These inputs are responsible for the emergence of topological solitons and the possibility of accommodating the asymptotic scaling properties of the confining string tension.

1998 ◽  
Vol 13 (26) ◽  
pp. 2085-2094 ◽  
Author(s):  
B. SATHIAPALAN

We use the matrix formalism to investigate what happens to strings above the Hagedorn temperature. We show that is not a limiting temperature but a temperature at which the continuum string picture breaks down. We study a collection of N D-0-branes arranged to form a string having N units of light-cone momentum. We find that at high temperatures the favored phase is one where the string worldsheet has disappeared and the low-energy degrees of freedom consists of N2 massless particles ("gluons"). The nature of the transition is very similar to the deconfinement transition in large-N Yang–Mills theories.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
H. Reinhardt ◽  
G. Burgio ◽  
D. Campagnari ◽  
E. Ebadati ◽  
J. Heffner ◽  
...  

We report on recent results obtained within the Hamiltonian approach to QCD in Coulomb gauge. Furthermore this approach is compared to recent lattice data, which were obtained by an alternative gauge-fixing method and which show an improved agreement with the continuum results. By relating the Gribov confinement scenario to the center vortex picture of confinement, it is shown that the Coulomb string tension is tied to the spatial string tension. For the quark sector, a vacuum wave functional is used which explicitly contains the coupling of the quarks to the transverse gluons and which results in variational equations which are free of ultraviolet divergences. The variational approach is extended to finite temperatures by compactifying a spatial dimension. The effective potential of the Polyakov loop is evaluated from the zero-temperature variational solution. For pure Yang–Mills theory, the deconfinement phase transition is found to be second order for SU(2) and first order for SU(3), in agreement with the lattice results. The corresponding critical temperatures are found to be 275 MeV and 280 MeV, respectively. When quarks are included, the deconfinement transition turns into a crossover. From the dual and chiral quark condensate, one finds pseudocritical temperatures of 198 MeV and 170 MeV, respectively, for the deconfinement and chiral transition.


2019 ◽  
Vol 28 (08) ◽  
pp. 1930006 ◽  
Author(s):  
Carlos Naya

The Skyrme model is a low energy effective field theory of strong interactions where nuclei and baryons appear as collective excitations of pionic degrees of freedom. In the last years, there has been a revival of Skyrme’s ideas and new related models, and some of them with BPS bounds (topological lower energy bounds) have been proposed. It is the aim of this paper to review how they can be applied to the study of neutron stars allowing for a description by means of topological solitons. We will focus on different aspects as the equation of state or the mass-radius relation, where we find that high maximal masses are supported.


Particles ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 491-498 ◽  
Author(s):  
Rudolf Golubich ◽  
Manfried Faber

The center vortex model of quantum chromodynamic states that vortices, a closed color-magnetic flux, percolate the vacuum. Vortices are seen as the relevant excitations of the vacuum, causing confinement and dynamical chiral symmetry breaking. In an appropriate gauge, as direct maximal center gauge, vortices are detected by projecting onto the center degrees of freedom. Such gauges suffer from Gribov copy problems: different local maxima of the corresponding gauge functional can result in different predictions of the string tension. By using nontrivial center regions—that is, regions whose boundary evaluates to a nontrivial center element—a resolution of this issue seems possible. We use such nontrivial center regions to guide simulated annealing procedures, preventing an underestimation of the string tension in order to resolve the Gribov copy problem.


1991 ◽  
Vol 06 (27) ◽  
pp. 4885-4908 ◽  
Author(s):  
M. CASELLE ◽  
F. GLIOZZI ◽  
S. VINTI ◽  
R. FIORE ◽  
P. PROVERO

We describe a high precision Monte Carlo test on Z2 and Z5 gauge models in 3D. Wilson loops of size 2≤R, T≤12 are measured and values of the string tension σ are extracted. These values fulfil asymptotic scaling if and only if the string contributions, namely the quantum fluctuations of the surfaces bordered by Wilson loops, are properly taken into account. As a byproduct of our analysis we find the signature of the finite thickness of these flux tubes.


Author(s):  
Rudolf Golubich ◽  
Manfried Faber

The center vortex model of quantum chromodynamic states that vortices, closed color-magnetic flux, percolate the vacuum. Vortices are seen as the relevant excitations of the vacuum, causing confinement and dynamical chiral symmetry breaking. In an appropriate gauge, as direct maximal center gauge, vortices are detected by projecting onto the center degrees of freedom. Such gauges suffer from Gribov copy problems: different local maxima of the corresponding gauge functional can result in different predictions of the string tension. By using non-trivial center regions, that is, regions whose boundary evaluates to a non-trivial center element, a resolution of this issue seems possible. We use such non-trivial center regions to guide simulated annealing procedures, preventing an underestimation of the string tension in order to resolve the Gribov copy problem.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Guido Cossu ◽  
David Lancaster ◽  
Biagio Lucini ◽  
Roberto Pellegrini ◽  
Antonio Rago

AbstractIn lattice calculations, the approach to the continuum limit is hindered by the severe freezing of the topological charge, which prevents ergodic sampling in configuration space. In order to significantly reduce the autocorrelation time of the topological charge, we develop a density of states approach with a smooth constraint and use it to study SU(3) pure Yang Mills gauge theory near the continuum limit. Our algorithm relies on simulated tempering across a range of couplings, which guarantees the decorrelation of the topological charge and ergodic sampling of topological sectors. Particular emphasis is placed on testing the accuracy, efficiency and scaling properties of the method. In their most conservative interpretation, our results provide firm evidence of a sizeable reduction of the exponent z related to the growth of the autocorrelation time as a function of the inverse lattice spacing.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Robert de Mello Koch ◽  
Eunice Gandote ◽  
Augustine Larweh Mahu

Abstract Acting on operators with a bare dimension ∆ ∼ N2 the dilatation operator of U(N) $$ \mathcal{N} $$ N = 4 super Yang-Mills theory defines a 2-local Hamiltonian acting on a graph. Degrees of freedom are associated with the vertices of the graph while edges correspond to terms in the Hamiltonian. The graph has p ∼ N vertices. Using this Hamiltonian, we study scrambling and equilibration in the large N Yang-Mills theory. We characterize the typical graph and thus the typical Hamiltonian. For the typical graph, the dynamics leads to scrambling in a time consistent with the fast scrambling conjecture. Further, the system exhibits a notion of equilibration with a relaxation time, at weak coupling, given by t ∼ $$ \frac{\rho }{\lambda } $$ ρ λ with λ the ’t Hooft coupling.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Arshia Momeni ◽  
Justinas Rumbutis ◽  
Andrew J. Tolley

Abstract We consider the double copy of massive Yang-Mills theory in four dimensions, whose decoupling limit is a nonlinear sigma model. The latter may be regarded as the leading terms in the low energy effective theory of a heavy Higgs model, in which the Higgs has been integrated out. The obtained double copy effective field theory contains a massive spin-2, massive spin-1 and a massive spin-0 field, and we construct explicitly its interacting Lagrangian up to fourth order in fields. We find that up to this order, the spin-2 self interactions match those of the dRGT massive gravity theory, and that all the interactions are consistent with a Λ3 = (m2MPl)1/3 cutoff. We construct explicitly the Λ3 decoupling limit of this theory and show that it is equivalent to a bi-Galileon extension of the standard Λ3 massive gravity decoupling limit theory. Although it is known that the double copy of a nonlinear sigma model is a special Galileon, the decoupling limit of massive Yang-Mills theory is a more general Galileon theory. This demonstrates that the decoupling limit and double copy procedures do not commute and we clarify why this is the case in terms of the scaling of their kinematic factors.


1992 ◽  
Vol 07 (27) ◽  
pp. 2469-2475
Author(s):  
C. S. AULAKH

We show that when a Chern-Simons term is added to the action of SU (N) (N≥3) Yang-Mills theory in five dimensions the usual self-dual topological solitons present in the theory necessarily pick up a (topological) electric charge.


Sign in / Sign up

Export Citation Format

Share Document