scholarly journals Almost Hypercomplex Manifolds with Hermitian-Norden Metrics and 4-dimensional Indecomposable Real Lie Algebras Depending on One Parameter

Author(s):  
Hristo Manev

We study almost hypercomplex structure with Hermitian-Norden metrics on 4-dimensional Lie groups considered as smooth manifolds. All the basic classes of a classification of 4-dimensional indecomposable real Lie algebras depending on one parameter are investigated. There are studied some geometrical characteristics of the respective almost hypercomplex manifolds with Hermitian-Norden metrics.

Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1354 ◽  
Author(s):  
Hassan Almusawa ◽  
Ryad Ghanam ◽  
Gerard Thompson

In this investigation, we present symmetry algebras of the canonical geodesic equations of the indecomposable solvable Lie groups of dimension five, confined to algebras A 5 , 7 a b c to A 18 a . For each algebra, the related system of geodesics is provided. Moreover, a basis for the associated Lie algebra of the symmetry vector fields, as well as the corresponding nonzero brackets, are constructed and categorized.


2019 ◽  
Vol 16 (07) ◽  
pp. 1950097
Author(s):  
Ghorbanali Haghighatdoost ◽  
Zohreh Ravanpak ◽  
Adel Rezaei-Aghdam

We study right-invariant (respectively, left-invariant) Poisson quasi-Nijenhuis structures on a Lie group [Formula: see text] and introduce their infinitesimal counterpart, the so-called r-qn structures on the corresponding Lie algebra [Formula: see text]. We investigate the procedure of the classification of such structures on the Lie algebras and then for clarity of our results we classify, up to a natural equivalence, all [Formula: see text]-[Formula: see text] structures on two types of four-dimensional real Lie algebras. We mention some remarks on the relation between [Formula: see text]-[Formula: see text] structures and the generalized complex structures on the Lie algebras [Formula: see text] and also the solutions of modified Yang–Baxter equation (MYBE) on the double of Lie bialgebra [Formula: see text]. The results are applied to some relevant examples.


2020 ◽  
pp. 14-14
Author(s):  
Tijana Sukilovic

In this paper the complete classification of left invariant metrics of arbitrary signature on solvable Lie groups is given. By identifying the Lie algebra with the algebra of left invariant vector fields on the corresponding Lie group ??, the inner product ??,?? on g = Lie G extends uniquely to a left invariant metric ?? on the Lie group. Therefore, the classification problem is reduced to the problem of classification of pairs (g, ??,??) known as the metric Lie algebras. Although two metric algebras may be isometric even if the corresponding Lie algebras are non-isomorphic, this paper will show that in the 4-dimensional solvable case isometric means isomorphic. Finally, the curvature properties of the obtained metric algebras are considered and, as a corollary, the classification of flat, locally symmetric, Ricciflat, Ricci-parallel and Einstein metrics is also given.


2020 ◽  
Vol 13 (08) ◽  
pp. 2050163
Author(s):  
Miroslava Ivanova ◽  
Lilko Dospatliev

Almost contact [Formula: see text]-metric manifolds of the lowest dimension 3 are constructed by a three-parametric family of Lie groups. Our aim is to determine the class of considered manifolds in a classification of almost contact [Formula: see text]-metric manifolds and their most important geometric characteristics and properties. Also, the type of the constructed Lie algebras is established in the Bianchi classification.


2021 ◽  
Vol 61 ◽  
pp. 79-104
Author(s):  
Tuyen Nguyen ◽  
◽  
Vu Le

In this paper, we consider exponential, connected and simply connected Lie groups which are corresponding to seven-dimensional Lie algebras such that their nilradical is a five-dimensional nilpotent Lie algebra $\mathfrak{g}_{5,2}$ given in Table~\ref{tab1}. In particular, we give a description of the geometry of the generic orbits in the coadjoint representation of some considered Lie groups. We prove that, for each considered group, the family of the generic coadjoint orbits forms a measurable foliation in the sense of Connes. The topological classification of these foliations is also provided.


2016 ◽  
Vol 14 (01) ◽  
pp. 1750007 ◽  
Author(s):  
A. Rezaei-Aghdam ◽  
M. Sephid

We describe the definition of Jacobi (generalized)–Lie bialgebras [Formula: see text] in terms of structure constants of the Lie algebras [Formula: see text] and [Formula: see text] and components of their 1-cocycles [Formula: see text] and [Formula: see text] in the basis of the Lie algebras. Then, using adjoint representations and automorphism Lie groups of Lie algebras, we give a method for classification of real low-dimensional Jacobi–Lie bialgebras. In this way, we obtain and classify real two- and three-dimensional Jacobi–Lie bialgebras.


Author(s):  
Josi A. de Azcárraga ◽  
Josi M. Izquierdo
Keyword(s):  

1966 ◽  
Vol 72 (3) ◽  
pp. 522-526 ◽  
Author(s):  
K. R. Parthasarathy ◽  
R. Ranga Rao ◽  
V. S. Varadarajan

Sign in / Sign up

Export Citation Format

Share Document