scholarly journals Virtual High Throughput Screening Based Prediction of Potential Drugs for COVID-19

Author(s):  
Sekhar Talluri

SARS-CoV-2 is a betacoronavirus that was first identified during the Wuhan COVID-19 epidemic in 2019. It was listed as a potential global health threat by WHO due to high mortality, high basic reproduction number and lack of clinically approved drugs and vaccines for COVID-19. The genomic sequence of the virus responsible for COVID-19, as well as the experimentally determined three dimensional structure of the Main protease (Mpro) are available. The reported structure of the target Mpro was utilized in this study to identify potential drugs for COVID-19 using virtual high throughput screening. The results of this study confirm earlier preliminary reports based on studies of homologs that some of the drugs approved for treatment of other viral infections also have the potential for treatment of COVID-19. Approved anti-viral drugs that target proteases were ranked for potential effectiveness against COVID-19 and novel candidates for drug repurposing were identified.

Author(s):  
Sekhar Talluri

SARS-CoV-2 is the betacoronavirus responsible for the COVID-19 pandemic. It was listed as a potential global health threat by WHO due to high mortality, high basic reproduction number and lack of clinically approved drugs and vaccines for COVID-19. The genomic sequence of the virus responsible for COVID-19, as well as the experimentally determined three dimensional structure of the Main protease (Mpro) are available. The reported structure of the target Mpro was utilized in this study to identify potential drugs for COVID-19 using molecular docking based virtual screening of all approved drugs. The results of this study confirm preliminary reports that some of the drugs approved for treatment of other viral infections have the potential for treatment of COVID-19. Selected antiviral drugs, approved for human therapeutic applications, were ranked for potential effectiveness against COVID-19, based on predicted binding energy to the target Mpro of SARS-CoV-2, and novel candidates for drug repurposing were identified in this study. In addition, potential mechanisms for beneficial off target effects of some drugs in clinical trials were identified by using molecular docking.


Author(s):  
Sekhar Talluri

Aims: To predict potential drugs for COVID-19 by using molecular docking for virtual screening of drugs approved for other clinical applications. <p> Background: SARS-CoV-2 is the betacoronavirus responsible for the COVID-19 pandemic. It was listed as a potential global health threat by WHO due to high mortality, high basic reproduction number and lack of clinically approved drugs and vaccines for COVID-19. The genomic sequence of the virus responsible for COVID-19, as well as the experimentally determined three dimensional structure of the Main protease are available. <p> </p> Objective: To identify potential drugs that can be repurposed for treatment of COVID-19 by using molecular docking based virtual screening of all approved drugs. <p> </p> Methods: List of drugs approved for clinical use was obtained from SuperDRUG2 database. The structure of the target in the apo form, as well as structures of several target-ligand complexes, were obtained from RCSB PDB. The structure of SARS-CoV-2 Mpro determined from X-ray diffraction data was used as the target. Data regarding drugs in clinical trials for COVID-19 was obtained from clinicaltrials.org. Input for molecular docking based virtual screening was prepared by using Obabel and customized python, bash and awk scripts. Molecular docking calculations were carried out with Vina and SMINA, and the docked conformations were analyzed and visualized with PLIP, Pymol and Rasmol. <p> </p> Results: Among the drugs that are being tested in clinical trials for COVID-19, Danoprevir and Darunavir have the highest binding affinity for the target main protease of SARS-CoV-2. Saquinavir and Beclabuvir were identified as the best novel candidates for COVID-19 therapy by using Virtual Screening of drugs approved for other clinical indications. <p> </p> Conclusion: Protease inhibitors approved for treatment of other viral diseases have the potential to be repurposed for treatment of COVID-19. </p>


Author(s):  
Yogesh Kumar ◽  
Harvijay Singh

<div>The rapidly enlarging COVID-19 pandemic caused by novel SARS-coronavirus 2 is a global</div><div>public health emergency of unprecedented level. Therefore the need of a drug or vaccine that</div><div>counter SARS-CoV-2 is an utmost requirement at this time. Upon infection the ssRNA genome</div><div>of SARS-CoV-2 is translated into large polyprotein which further processed into different</div><div>nonstructural proteins to form viral replication complex by virtue of virus specific proteases:</div><div>main protease (3-CL protease) and papain protease. This indispensable function of main protease</div><div>in virus replication makes this enzyme a promising target for the development of inhibitors and</div><div>potential treatment therapy for novel coronavirus infection. The recently concluded α-ketoamide</div><div>ligand bound X-ray crystal structure of SARS-CoV-2 Mpro (PDB ID: 6Y2F) from Zhang et al.</div><div>has revealed the potential inhibitor binding mechanism and the determinants responsible for</div><div>involved molecular interactions. Here, we have carried out a virtual screening and molecular</div><div>docking study of FDA approved drugs primarily targeted for other viral infections, to investigate</div><div>their binding affinity in Mpro active site. Virtual screening has identified a number of antiviral</div><div>drugs, top ten of which on the basis of their bending energy score are further examined through </div><div>molecular docking with Mpro. Docking studies revealed that drug Lopinavir-Ritonavir, Tipranavir</div><div>and Raltegravir among others binds in the active site of the protease with similar or higher</div><div>affinity than the crystal bound inhibitor α-ketoamide. However, the in-vitro efficacies of the drug</div><div>molecules tested in this study, further needs to be corroborated by carrying out biochemical and</div><div>structural investigation. Moreover, this study advances the potential use of existing drugs to be</div><div>investigated and used to contain the rapidly expanding SARS-CoV-2 infection.</div>


Author(s):  
Yogesh Kumar ◽  
Harvijay Singh

<div>The rapidly enlarging COVID-19 pandemic caused by novel SARS-coronavirus 2 is a global</div><div>public health emergency of unprecedented level. Therefore the need of a drug or vaccine that</div><div>counter SARS-CoV-2 is an utmost requirement at this time. Upon infection the ssRNA genome</div><div>of SARS-CoV-2 is translated into large polyprotein which further processed into different</div><div>nonstructural proteins to form viral replication complex by virtue of virus specific proteases:</div><div>main protease (3-CL protease) and papain protease. This indispensable function of main protease</div><div>in virus replication makes this enzyme a promising target for the development of inhibitors and</div><div>potential treatment therapy for novel coronavirus infection. The recently concluded α-ketoamide</div><div>ligand bound X-ray crystal structure of SARS-CoV-2 Mpro (PDB ID: 6Y2F) from Zhang et al.</div><div>has revealed the potential inhibitor binding mechanism and the determinants responsible for</div><div>involved molecular interactions. Here, we have carried out a virtual screening and molecular</div><div>docking study of FDA approved drugs primarily targeted for other viral infections, to investigate</div><div>their binding affinity in Mpro active site. Virtual screening has identified a number of antiviral</div><div>drugs, top ten of which on the basis of their bending energy score are further examined through </div><div>molecular docking with Mpro. Docking studies revealed that drug Lopinavir-Ritonavir, Tipranavir</div><div>and Raltegravir among others binds in the active site of the protease with similar or higher</div><div>affinity than the crystal bound inhibitor α-ketoamide. However, the in-vitro efficacies of the drug</div><div>molecules tested in this study, further needs to be corroborated by carrying out biochemical and</div><div>structural investigation. Moreover, this study advances the potential use of existing drugs to be</div><div>investigated and used to contain the rapidly expanding SARS-CoV-2 infection.</div>


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Ryan P. Trombetta ◽  
Paul M. Dunman ◽  
Edward M. Schwarz ◽  
Stephen L. Kates ◽  
Hani A. Awad

ABSTRACTDrug repurposing offers an expedited and economical route to develop new clinical therapeutics in comparison to traditional drug development. Growth-based high-throughput screening is concomitant with drug repurposing and enables rapid identification of new therapeutic uses for investigated drugs; however, this traditional method is not compatible with microorganisms with abnormal growth patterns such asStaphylococcus aureussmall-colony variants (SCV). SCV subpopulations are auxotrophic for key compounds in biosynthetic pathways, which result in low growth rate. SCV formation is also associated with reduced antibiotic susceptibility, and the SCV’s ability to revert to the normal cell growth state is thought to contribute to recurrence ofS. aureusinfections. Thus, there is a critical need to identify antimicrobial agents that are potent against SCV in order to effectively treat chronic infections. Accordingly, here we describe adapting an adenylate kinase (AK)-based cell death reporter assay to identify members of a Food and Drug Administration (FDA)-approved drug library that display bactericidal activity againstS. aureusSCV. Four library members, daunorubicin, ketoconazole, rifapentine, and sitafloxacin, exhibited potent SCV bactericidal activity against a stableS. aureusSCV. Further investigation showed that sitafloxacin was potent against methicillin-susceptible and -resistantS. aureus, as well asS. aureuswithin an established biofilm. Taken together, these results demonstrate the ability to use the AK assay to screen small-molecule libraries for SCV bactericidal agents and highlight the therapeutic potential of sitafloxacin to be repurposed to treat chronicS. aureusinfections associated with SCV and/or biofilm growth states.IMPORTANCEConventional antibiotics fail to successfully treat chronic osteomyelitis, endocarditis, and device-related and airway infections. These recurring infections are associated with the emergence of SCV, which are recalcitrant to conventional antibiotics. Studies have investigated antibiotic therapies to treat SCV-related infections but have had little success, emphasizing the need to identify novel antimicrobial drugs. However, drug discovery is a costly and time-consuming process. An alternative strategy is drug repurposing, which could identify FDA-approved and well-characterized drugs that could have off-label utility in treating SCV. In this study, we adapted a high-throughput AK-based assay to identify 4 FDA-approved drugs, daunorubicin, ketoconazole, rifapentine, and sitafloxacin, which display antimicrobial activity againstS. aureusSCV, suggesting an avenue for drug repurposing in order to effectively treat SCV-related infections. Additionally, this screening paradigm can easily be adapted for other drug/chemical libraries to identify compounds bactericidal against SCV.


Author(s):  
Sangjae Seo ◽  
Jung Woo Park ◽  
Dosik An ◽  
Junwon Yoon ◽  
Hyojung Paik ◽  
...  

Coronavirus diseases (COVID-19) outbreak has been labelled a pandemic. For the prioritization of treatments to cope with COVID-19, it is important to conduct rapid high-throughput screening of chemical compounds to repurposing the approved drugs, such as repositioning of chloroquine (Malaria drug) for COVID-19. In this study, exploiting supercomputer resource, we conducted high-throughput virtual screening for potential repositioning candidates of the protease inhibitor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using the three dimensional structure of main protease (Mpro) of SARS-CoV-2, we evaluated binding affinity between Mpro and drug candidates listed in SWEETLEAD library and ChEMBL database. Docking scores of 19,168 drug molecules at the active site of Mpro were calculated using Autodock Vina package. Among the calculated result, we selected 43 drug candidates and ran molecular dynamics (MD) simulation to further investigate protein-drug interaction. Among compounds that bind to the active site of SARS-CoV-2, we finally selected the 8 drugs showing the highest binding affinity; asunaprevir, atazanavir, dasabuvir, doravirine, fosamprenavir, ritonavir, voxilaprevir and amprenavir, which are the antiviral drugs of hepatitis C virus or human immunodeficiency virus. We expect that the present study provides comprehensive insights into the development of antiviral medication, especially for the treatment of COVID-19.<div><br></div><div>* Attached excel file contains a full list of results of docking calculations</div>


2020 ◽  
Author(s):  
Sangjae Seo ◽  
Jung Woo Park ◽  
Dosik An ◽  
Junwon Yoon ◽  
Hyojung Paik ◽  
...  

Coronavirus diseases (COVID-19) outbreak has been labelled a pandemic. For the prioritization of treatments to cope with COVID-19, it is important to conduct rapid high-throughput screening of chemical compounds to repurposing the approved drugs, such as repositioning of chloroquine (Malaria drug) for COVID-19. In this study, exploiting supercomputer resource, we conducted high-throughput virtual screening for potential repositioning candidates of the protease inhibitor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using the three dimensional structure of main protease (Mpro) of SARS-CoV-2, we evaluated binding affinity between Mpro and drug candidates listed in SWEETLEAD library and ChEMBL database. Docking scores of 19,168 drug molecules at the active site of Mpro were calculated using Autodock Vina package. Among the calculated result, we selected 43 drug candidates and ran molecular dynamics (MD) simulation to further investigate protein-drug interaction. Among compounds that bind to the active site of SARS-CoV-2, we finally selected the 8 drugs showing the highest binding affinity; asunaprevir, atazanavir, dasabuvir, doravirine, fosamprenavir, ritonavir, voxilaprevir and amprenavir, which are the antiviral drugs of hepatitis C virus or human immunodeficiency virus. We expect that the present study provides comprehensive insights into the development of antiviral medication, especially for the treatment of COVID-19.<div><br></div><div>* Attached excel file contains a full list of results of docking calculations</div>


Author(s):  
Wei Zhu ◽  
Miao Xu ◽  
Catherine Z. Chen ◽  
Hui Guo ◽  
Min Shen ◽  
...  

AbstractThe outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emphasized the urgency to develop effective therapeutics. Drug repurposing screening is regarded as one of the most practical and rapid approaches for the discovery of such therapeutics. The 3C like protease (3CLpro), or main protease (Mpro) of SARS-CoV-2 is a valid drug target as it is a specific viral enzyme and plays an essential role in viral replication. We performed a quantitative high throughput screening (qHTS) of 10,755 compounds consisting of approved and investigational drugs, and bioactive compounds using a SARS-CoV-2 3CLpro assay. Twenty-three small molecule inhibitors of SARS-CoV-2 3CLpro have been identified with IC50s ranging from 0.26 to 28.85 μM. Walrycin B (IC50 = 0.26 µM), Hydroxocobalamin (IC50 = 3.29 µM), Suramin sodium (IC50 = 6.5 µM), Z-DEVD-FMK (IC50 = 6.81 µM), LLL-12 (IC50 = 9.84 µM), and Z-FA-FMK (IC50 = 11.39 µM) are the most potent 3CLpro inhibitors. The activities of anti-SARS-CoV-2 viral infection was confirmed in 7 of 23 compounds using a SARS-CoV-2 cytopathic effect assay. The results demonstrated a set of SARS-CoV-2 3CLpro inhibitors that may have potential for further clinical evaluation as part of drug combination therapies to treating COVID-19 patients, and as starting points for chemistry optimization for new drug development.


2021 ◽  
pp. 247255522110006
Author(s):  
Lesley-Anne Pearson ◽  
Charlotte J. Green ◽  
De Lin ◽  
Alain-Pierre Petit ◽  
David W. Gray ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents a significant threat to human health. Despite its similarity to related coronaviruses, there are currently no specific treatments for COVID-19 infection, and therefore there is an urgent need to develop therapies for this and future coronavirus outbreaks. Formation of the cap at the 5′ end of viral RNA has been shown to help coronaviruses evade host defenses. Nonstructural protein 14 (nsp14) is responsible for N7-methylation of the cap guanosine in coronaviruses. This enzyme is highly conserved among coronaviruses and is a bifunctional protein with both N7-methyltransferase and 3′-5′ exonuclease activities that distinguish nsp14 from its human equivalent. Mutational analysis of SARS-CoV nsp14 highlighted its role in viral replication and translation efficiency of the viral genome. In this paper, we describe the characterization and development of a high-throughput assay for nsp14 utilizing RapidFire technology. The assay has been used to screen a library of 1771 Food and Drug Administration (FDA)-approved drugs. From this, we have validated nitazoxanide as a selective inhibitor of the methyltransferase activity of nsp14. Although modestly active, this compound could serve as a starting point for further optimization.


2021 ◽  
Author(s):  
Julian Breidenbach ◽  
Carina Lemke ◽  
Thanigaimalai Pillaiyar ◽  
Laura Schäkel ◽  
Ghazl Al Hamwi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document