scholarly journals Identification of SARS-CoV-2 3CL Protease Inhibitors by a Quantitative High-throughput Screening

Author(s):  
Wei Zhu ◽  
Miao Xu ◽  
Catherine Z. Chen ◽  
Hui Guo ◽  
Min Shen ◽  
...  

AbstractThe outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emphasized the urgency to develop effective therapeutics. Drug repurposing screening is regarded as one of the most practical and rapid approaches for the discovery of such therapeutics. The 3C like protease (3CLpro), or main protease (Mpro) of SARS-CoV-2 is a valid drug target as it is a specific viral enzyme and plays an essential role in viral replication. We performed a quantitative high throughput screening (qHTS) of 10,755 compounds consisting of approved and investigational drugs, and bioactive compounds using a SARS-CoV-2 3CLpro assay. Twenty-three small molecule inhibitors of SARS-CoV-2 3CLpro have been identified with IC50s ranging from 0.26 to 28.85 μM. Walrycin B (IC50 = 0.26 µM), Hydroxocobalamin (IC50 = 3.29 µM), Suramin sodium (IC50 = 6.5 µM), Z-DEVD-FMK (IC50 = 6.81 µM), LLL-12 (IC50 = 9.84 µM), and Z-FA-FMK (IC50 = 11.39 µM) are the most potent 3CLpro inhibitors. The activities of anti-SARS-CoV-2 viral infection was confirmed in 7 of 23 compounds using a SARS-CoV-2 cytopathic effect assay. The results demonstrated a set of SARS-CoV-2 3CLpro inhibitors that may have potential for further clinical evaluation as part of drug combination therapies to treating COVID-19 patients, and as starting points for chemistry optimization for new drug development.

Author(s):  
Sekhar Talluri

SARS-CoV-2 is a betacoronavirus that was first identified during the Wuhan COVID-19 epidemic in 2019. It was listed as a potential global health threat by WHO due to high mortality, high basic reproduction number and lack of clinically approved drugs and vaccines for COVID-19. The genomic sequence of the virus responsible for COVID-19, as well as the experimentally determined three dimensional structure of the Main protease (Mpro) are available. The reported structure of the target Mpro was utilized in this study to identify potential drugs for COVID-19 using virtual high throughput screening. The results of this study confirm earlier preliminary reports based on studies of homologs that some of the drugs approved for treatment of other viral infections also have the potential for treatment of COVID-19. Approved anti-viral drugs that target proteases were ranked for potential effectiveness against COVID-19 and novel candidates for drug repurposing were identified.


2021 ◽  
Author(s):  
Julian Breidenbach ◽  
Carina Lemke ◽  
Thanigaimalai Pillaiyar ◽  
Laura Schäkel ◽  
Ghazl Al Hamwi ◽  
...  

2012 ◽  
Vol 56 (6) ◽  
pp. 3399-3401 ◽  
Author(s):  
Kevin D. McCormick ◽  
Shufeng Liu ◽  
Jana L. Jacobs ◽  
Ernesto T. A. Marques ◽  
Nicolas Sluis-Cremer ◽  
...  

ABSTRACTWe have developed a robust cytopathic effect-based high-throughput screening assay to identify inhibitors of dengue virus (DENV) infection. Screening of a small natural product library yielded 11 hits. Four of these were found to be potent inhibitors of DENV, although serotype differences were noted. Taken together, these data suggest that screening of larger and more complex molecule libraries may result in the identification of more potent and specific DENV inhibitors.


Author(s):  
Yan Li ◽  
Jinyong Zhang ◽  
Ning Wang ◽  
Haibo Li ◽  
Yun Shi ◽  
...  

Abstract2019 Novel Coronavirus (2019-nCoV) is a virus identified as the cause of the outbreak of pneumonia first detected in Wuhan, China. Investigations on the transmissibility, severity, and other features associated with this virus are ongoing. Currently, there is no vaccine or therapeutic antibody to prevent the infection, and more time is required to develop an effective immune strategy against the pathogen. In contrast, specific inhibitors targeting the key protease involved in replication and proliferation of the virus are the most effective means to alleviate the epidemic. The main protease of SARS-CoV is essential for the life cycle of the virus, which showed 96.1% of similarity with the main proteaseof 2019-nCoV, is considered to be an attractive target for drug development. In this study, we have identified 4 small molecular drugs with high binding capacity with SARS-CoV main protease by high-throughput screening based on the 8,000 clinical drug libraries, all these drugs have been widely used in clinical applications with guaranteed safety, which may serve as promising candidates to treat the infection of 2019-nCoV.


Author(s):  
Milan Sencanski ◽  
Vladimir Perovic ◽  
Snezana Pajovic ◽  
Miroslav Adzic ◽  
Slobodan Paessler ◽  
...  

<p>The SARS-CoV-2 outbreak caused an unprecedented global public health threat, having a high transmission rate with currently no drugs or vaccines approved. An alternative powerful additional approach to counteract COVID-19 is <em>in silico</em> drug repurposing. The SARS-CoV-2 main protease is essential for viral replication and an attractive drug target. In this study, we used the virtual screening (VS) protocol with both long-range and short-range interactions to select candidate SARS-CoV-2 main protease inhibitors. First, the ISM applied for Small Molecules was used for searching the Drugbank database and further followed by molecular docking. After <em>in silico</em> screening of drug space, we identified 57 drugs as potential SARS-CoV-2 main protease inhibitors that we propose for further experimental testing.</p>


2020 ◽  
Vol 3 (5) ◽  
pp. 1008-1016
Author(s):  
Wei Zhu ◽  
Miao Xu ◽  
Catherine Z. Chen ◽  
Hui Guo ◽  
Min Shen ◽  
...  

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Ursula Heins-Marroquin ◽  
Paul P Jung ◽  
Maria Lorena Cordero-Maldonado ◽  
Alexander D Crawford ◽  
Carole L Linster

Abstract Mutations in ATP13A2 (PARK9) are causally linked to the rare neurodegenerative disorders Kufor-Rakeb syndrome, hereditary spastic paraplegia and neuronal ceroid lipofuscinosis. This suggests that ATP13A2, a lysosomal cation-transporting ATPase, plays a crucial role in neuronal cells. The heterogeneity of the clinical spectrum of ATP13A2-associated disorders is not yet well understood and currently, these diseases remain without effective treatment. Interestingly, ATP13A2 is widely conserved among eukaryotes, and the yeast model for ATP13A2 deficiency was the first to indicate a role in heavy metal homeostasis, which was later confirmed in human cells. In this study, we show that the deletion of YPK9 (the yeast orthologue of ATP13A2) in Saccharomyces cerevisiae leads to growth impairment in the presence of Zn2+, Mn2+, Co2+ and Ni2+, with the strongest phenotype being observed in the presence of zinc. Using the ypk9Δ mutant, we developed a high-throughput growth rescue screen based on the Zn2+ sensitivity phenotype. Screening of two libraries of Food and Drug Administration-approved drugs identified 11 compounds that rescued growth. Subsequently, we generated a zebrafish model for ATP13A2 deficiency and found that both partial and complete loss of atp13a2 function led to increased sensitivity to Mn2+. Based on this phenotype, we confirmed two of the drugs found in the yeast screen to also exert a rescue effect in zebrafish—N-acetylcysteine, a potent antioxidant, and furaltadone, a nitrofuran antibiotic. This study further supports that combining the high-throughput screening capacity of yeast with rapid in vivo drug testing in zebrafish can represent an efficient drug repurposing strategy in the context of rare inherited disorders involving conserved genes. This work also deepens the understanding of the role of ATP13A2 in heavy metal detoxification and provides a new in vivo model for investigating ATP13A2 deficiency.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1579
Author(s):  
Omur Guven ◽  
Mehmet Gul ◽  
Esra Ayan ◽  
J Austin Johnson ◽  
Baris Cakilkaya ◽  
...  

Since early 2020, COVID-19 has grown to affect the lives of billions globally. A worldwide investigation has been ongoing for characterizing the virus and also for finding an effective drug and developing vaccines. As time has been of the essence, a crucial part of this research has been drug repurposing; therefore, confirmation of in silico drug screening studies have been carried out for this purpose. Here we demonstrated the possibility of screening a variety of drugs efficiently by leveraging a high data collection rate of 120 images/second with the new low-noise, high dynamic range ePix10k2M Pixel Array Detector installed at the Macromolecular Femtosecond Crystallography (MFX) instrument at the Linac Coherent Light Source (LCLS). The X-ray Free-Electron Laser (XFEL) is used for remote high-throughput data collection for drug repurposing of the main protease (Mpro) of SARS-CoV-2 at ambient temperature with mitigated X-ray radiation damage. We obtained multiple structures soaked with nine drug candidate molecules in two crystal forms. Although our drug binding attempts failed, we successfully established a high-throughput Serial Femtosecond X-ray crystallographic (SFX) data collection protocol.


Sign in / Sign up

Export Citation Format

Share Document