scholarly journals Theoretical Analysis of the Induction of Forced Resonance Mechanical Oscillations to Virus Particles by Microwave Irradiation:Prospects as an Anti-virus Modality

Author(s):  
Nikolaos Uzunoglu

The induction of acoustic-mechanical oscillations to virus particles by illuminating them with microwave signals is analyzed theoretically. Assuming the virus particle being of spherical shape, its capsid consisting primarily of glycoproteins, a viscous fluid model is adopted while the outside medium of the sphere is taken to be ideal fluid. The electrical charge distribution of virus particle is assumed to be spherically symmetric with a variation along the radius. The generated acoustic-mechanical oscillations are computed by solving a boundary value problem analytically, making use of the Green’s function approach. Resonance conditions to achieve maximum energy transfer from microwave radiation to acoustic oscillation to the particle is investigated. Estimation of the feasibility of the technique to compete virus epidemics either for sterilization of spaces and/or use for future therapeutic applications is examined briefly.

Author(s):  
Elizabeth S. Priori ◽  
T. Shigematsu ◽  
B. Myers ◽  
L. Dmochowski

Spontaneous release of type C virus particles in long-term cultures of mouse embryo cells as well as induction of similar particles in mouse embryo cell cultures with IUDR or BUDR have been reported. The presence of type C virus particles in cultures of normal rat embryos has not been reported.NB-1, a culture derived from embryos of a New Zealand Black (NB) rat (rats obtained from Mr. Samuel M. Poiley, N.C.I., Bethesda, Md.) and grown in McCoy's 5A medium supplemented with 20% fetal calf serum was passaged weekly. Extracellular virus particles similar to murine leukemia particles appeared in the 22nd subculture. General appearance of cells in passage 23 is shown in Fig. 1. Two budding figures and one immature type C virus particle may be seen in Fig. 2. The virus particles and budding were present in all further passages examined (currently passage 39). Various stages of budding are shown in Figs. 3a,b,c,d. Appearance of a mature virus particle is shown in Fig. 4.


2008 ◽  
Vol 75 (3) ◽  
Author(s):  
Samer Hassan ◽  
Masahiro Kawaji

The effects of small vibrations on particle motion in a viscous fluid cell have been investigated experimentally and theoretically. A steel particle was suspended by a thin wire at the center of a fluid cell, and the cell was vibrated horizontally using an electromagnetic actuator and an air bearing stage. The vibration-induced particle amplitude measurements were performed for different fluid viscosities (58.0cP and 945cP), and cell vibration amplitudes and frequencies. A viscous fluid model was also developed to predict the vibration-induced particle motion. This model shows the effect of fluid viscosity compared to the inviscid model, which was presented earlier by Hassan et al. (2004, “The Effects of Vibrations on Particle Motion in an Infinite Fluid Cell,” ASME J. Appl. Mech., 73(1), pp. 72–78) and validated using data obtained for water. The viscous model with modified drag coefficients is shown to predict well the particle amplitude data for the fluid viscosities of 58.5cP and 945cP. While there is a resonance frequency corresponding to the particle peak amplitude for oil (58.0cP), this phenomenon disappeared for glycerol (945cP). This disappearance of resonance phenomenon is explained by referring to the theory of mechanical vibrations of a mass-spring-damper system. For the sinusoidal particle motion in a viscous fluid, the effective drag force has been obtained, which includes the virtual mass force, drag force proportional to the velocity, and the Basset or history force terms.


1963 ◽  
Vol 118 (2) ◽  
pp. 295-306 ◽  
Author(s):  
Wesley C. Wilcox ◽  
Harold S. Ginsberg

Type 5 adenovirus was purified by fluorocarbon (freon 113) treatment followed by banding in a CsCl equilibrium density gradient. This method permitted separation of virus from normal host cell materials and virus-specific soluble antigens. Virus banded in CsCl with a mean bouyant density of 1.3349 gm/cm3. The three virus-specific soluble antigens (group- and type-specific antigens and toxin) banded together with a mean bouyant density of 1.2832 gm/cm3. The group-specific antigen was the predominant antigen of the purified virus particle, whereas the group- and type-specific antigens were present in equal titers in the antigen band. Infectious virus particles were inactivated by prolonged dialysis at pH 10.5. Centrifugation of inactivated virus preparations in a CsCl equilibrium density gradient resulted in separation of virus DNA from specific antigen: the antigens banded with a mean bouyant density of 1.2832 gm/cm3 and the DNA sedimented to the bottom of the tube. The predominant antigen derived from purified virus particles was the group-specific antigen and it was in the same relative proportion to the type-specific antigen as measured in intact particles. The antigens derived from disrupted virus were immunologically identical with the soluble virus antigens present in infected cells.


MethodsX ◽  
2015 ◽  
Vol 2 ◽  
pp. 91-99 ◽  
Author(s):  
István Makra ◽  
Péter Terejánszky ◽  
Róbert E. Gyurcsányi

2003 ◽  
Vol 7 (4) ◽  
pp. 565-575 ◽  
Author(s):  
Emiliano D'Agostino ◽  
Frederik Maes ◽  
Dirk Vandermeulen ◽  
Paul Suetens

Author(s):  
Kazuharu Bamba ◽  
Sergei D. Odintsov

Sign in / Sign up

Export Citation Format

Share Document