scholarly journals A Note on Type 2 Degenerate Poly-Frobenius-Genocchi Polynomials

Author(s):  
Waseem A. Khan

In [18], Kim et al. introduced the degenerate poly-Bernoulli polynomials by using polyexponential function. In this paper, we study the degenerate poly-Frobenius-Genocchi polynomials, which are called the type 2 degenerate poly-Frobenius-Genocchi polynomials, by means of polyexponential function. Then, we derive some useful relations and properties. We derive type 2 degenerate poly-Frobenius-Genocchi polynomials equal a linear combination of the degenerate Frobenius-Genocchi polynomials and Stirling numbers of the first kind. Furthermore, we introduce type 2 degenerate unipoly-Frobenius-Genocchi polynomials by means of unipoly function and derive explicit multifarious properties.

Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz ◽  
Serkan Araci

Motivated by the definition of the type 2 poly-Bernoulli polynomials introduced by Kim-Kim, in the present paper, we consider a class of new generating function for the Frobenius-Genocchi polynomials, called the type 2 poly-Frobenius-Genocchi polynomials, by means of the polyexponential function. Then, we derive some useful relations and properties. We show that the type 2 poly-Frobenius-Genocchi polynomias equal a linear combination of the classical Frobenius-Genocchi polynomials and Stirling numbers of the first kind. In a special case, we give a relation between the type 2 poly-Frobenius-Genocchi polynomials and Bernoulli polynomials of order k. Moreover, inspired by the definition of the unipoly-Bernoulli polynomials introduced by Kim-Kim, we introduce the unipoly-Frobenius-Genocchi polynomials by means of unipoly function and give multifarious properties including derivative and integral properties. Furthermore, we provide a correlation between the unipoly-Frobenius-Genocchi polynomials and the classical Frobenius-Genocchi polynomials.


Author(s):  
Waseem Khan

Motivation by the definition of the type 2 poly-Bernoulli polynomials introduced by Kim-Kim [9], in the present paper, we consider a new class of new generating function for the Fubini polynomials, called the type 2 poly-Fubini polynomials by means of the polyexponential function. Then, we derive some useful relations and properties. We show that the type 2 poly-Fubini polynomials equal a linear combination of the classical of the Fubini polynomials and Stirling numbers of the first kind. In a special case, we give a relation between the type 2 poly-Fubini polynomials and Bernoulli polynomials of order r. Moreover, inspired by the definition of the unipoly-Bernoulli polynomials introduced by Kim-Kim [9]. We introduce the type 2 unipoly-Fubini polynomials by means of unipoly function and give multifarious properties including derivative and integral properties. Furthermore, we provide a correlation between the unipoly-Fubini polynomials and the classical Fubini polynomials.


Author(s):  
Waseem A Khan ◽  
Aysha Khan ◽  
Ugur Duran

Inspired by the definition of degenerate multi-poly-Genocchi polynomials given by using the degenerate multi-polyexponential functions. In this paper, we consider a class of new generating function for the degenerate multi-poly-Bernoulli polynomials, called the type 2 degenerate multi-poly-Bernoulli polynomials by means of the degenerate multiple polyexponential functions. Then, we investigate their some properties and relations. We show that the type 2 degenerate multi-poly-Bernoulli polynomials equals a linear combination of the weighted degenerate Bernoulli polynomials and Stirling numbers of the first kind. Moreover, we provide an addition formula and a derivative formula. Furthermore, in a special case, we acquire a correlation between the type 2 degenerate multi-poly-Bernoulli numbers and degenerate Whitney numbers.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 281
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran

In the present work, a new extension of the two-variable Fubini polynomials is introduced by means of the polyexponential function, which is called the two-variable type 2 poly-Fubini polynomials. Then, some useful relations including the Stirling numbers of the second and the first kinds, the usual Fubini polynomials, and the higher-order Bernoulli polynomials are derived. Also, some summation formulas and an integral representation for type 2 poly-Fubini polynomials are investigated. Moreover, two-variable unipoly-Fubini polynomials are introduced utilizing the unipoly function, and diverse properties involving integral and derivative properties are attained. Furthermore, some relationships covering the two-variable unipoly-Fubini polynomials, the Stirling numbers of the second and the first kinds, and the Daehee polynomials are acquired.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1007 ◽  
Author(s):  
Dmitry V. Dolgy ◽  
Lee-Chae Jang

Recently, Kim-Kim (2019) introduced polyexponential and unipoly functions. By using these functions, they defined type 2 poly-Bernoulli and type 2 unipoly-Bernoulli polynomials and obtained some interesting properties of them. Motivated by the latter, in this paper, we construct the poly-Genocchi polynomials and derive various properties of them. Furthermore, we define unipoly Genocchi polynomials attached to an arithmetic function and investigate some identities of them.


Author(s):  
Waseem Khan ◽  
Idrees Ahmad Khan ◽  
Mehmet Acikgoz ◽  
Ugur Duran

In this paper, a new class of q-Hermite based Frobenius type Eulerian polynomials is introduced by means of generating function and series representation. Several fundamental formulas and recurrence relations for these polynomials are derived via different generating methods. Furthermore, diverse correlations including the q-Apostol-Bernoulli polynomials, the q-Apostol-Euler poynoomials, the q-Apostol-Genocchi polynomials and the q-Stirling numbers of the second kind are also established by means of the their generating functions.


Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz ◽  
Serkan Araci

In this paper, we introduce a new generalization of the r-Stirling numbers of the second kind based on the q-numbers via an exponential generating function. We investigate their some properties and derive several relations among q-Bernoulli numbers and polynomials, and newly de…ned (q, r, w)-Stirling numbers of the second kind. We also obtain q-Bernstein polynomials as a linear combination of (q, r, w)-Stirling numbers of the second kind and q-Bernoulli polynomials in w.


Author(s):  
Waseem Ahmad Khan ◽  
Mehmet Acikgoz ◽  
Ugur Duran

In this paper, we consider a new class of polynomials which is called the multi-poly-Euler polynomials. Then, we investigate their some properties and relations. We provide that the type 2 degenerate multi-poly-Euler polynomials equals a linear combination of the degenerate Euler polynomials of higher order and the degenerate Stirling numbers of the first kind. Moreover, we provide an addition formula and a derivative formula. Furthermore, in a special case, we acquire a correlation between the type 2 degenerate multi-poly-Euler polynomials and degenerate Whitney numbers.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1011 ◽  
Author(s):  
Dae Sik Lee ◽  
Hye Kyung Kim ◽  
Lee-Chae Jang

In recent years, many mathematicians have studied the degenerate versions of many special polynomials and numbers. The polyexponential functions were introduced by Hardy and rediscovered by Kim, as inverses to the polylogarithms functions. The paper is divided two parts. First, we introduce a new type of the type 2 poly-Euler polynomials and numbers constructed from the modified polyexponential function, the so-called type 2 poly-Euler polynomials and numbers. We show various expressions and identities for these polynomials and numbers. Some of them involving the (poly) Euler polynomials and another special numbers and polynomials such as (poly) Bernoulli polynomials, the Stirling numbers of the first kind, the Stirling numbers of the second kind, etc. In final section, we introduce a new type of the type 2 degenerate poly-Euler polynomials and the numbers defined in the previous section. We give explicit expressions and identities involving those polynomials in a similar direction to the previous section.


Author(s):  
Waseem A. Khan

The main purpose of this paper is to introduce a new class of $q$-Hermite-Fubini numbers and polynomials by combining the $q$-Hermite polynomials and $q$-Fubini polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive $q$-integers.  Also, we establish some relationships for $q$-Hermite-Fubini polynomials associated with $q$-Bernoulli polynomials, $q$-Euler polynomials and $q$-Genocchi polynomials and $q$-Stirling numbers of the second kind.


Sign in / Sign up

Export Citation Format

Share Document