scholarly journals Validation of Airborne Sensor Photogrammetric Digital Terrain and Global Digital Elevation Models around Mekelle City, Ethiopia

Author(s):  
Hareya Biryhane ◽  
Tulu B. Bedada ◽  
Berhan Gessesse ◽  
Martin Vermeer

The quality of photogrammetric-based derived products like orthophotos, digital terrain models (DTMs) and digital line maps as well as the global digital elevation models (DEM) are rigorously dependent on the accuracy of image orientation. This paper evaluates the vertical accuracy of aerial photogrammetric Digital Terrain Model (DTM), Shuttle Radar Topography Mission (SRTM), Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER), and TerraSAR-X's twin satellite of TanDEM-X (TDX) datasets against in-situ orthometric heights computed from ellipsoidal heights and the 2008 Earth Gravitational Model (EGM2008) derived geoid heights in Ethiopia. The quality of the four global digital elevation models was also validated against the aerial photogrammetric DTM measurements. Besides, the accuracies of the photogrammetric DTM and the four DEM products were checked for their compliance to the American Society for Photogrammetry and Remote Sensing (ASPRS) standards as well as the Ethiopian national vertical data evaluation standards. The study showed that the photogrammetric DTM is in a good agreement with the reference orthometric heights compared to SRTM, ASTER and TDX datasets. More precisely, the result has an absolute accuracy of 1.67 m at Linear Error (LE) 95% confidence level, while the absolute accuracy of SRTM3 arc seconds (SRTM3) at LE 90% (11.91 m) is better than its product specification (16 m). The absolute accuracy of SRTM1 arc second (SRTM1) (7.70 m at LE 90%) surpasses that of SRTM3, whereas the absolute accuracy of ASTER DEM is somehow below its product specification. TDX also has the same vertical accuracy (10.29 m at LE 90%) compared to its product specification (10 m). Furthermore, the vertical accuracy of the photogrammetric DTM meets the100 cm vertical accuracy of the 2015 ASPRS standard. However, it does not meet the Ethiopian national vertical data accuracy requirement standard, i.e., RMSEz of ± 0.45 m. In general, the photogrammetric DTM, SRTM1, and TDX have been proven a superior product over the SRTM3 and ASTER DEMs, and better to use these products for high-level precision and accuracy required applications.

2021 ◽  
Vol 13 (22) ◽  
pp. 4653
Author(s):  
Martin Karlson ◽  
David Bastviken ◽  
Heather Reese

Many biochemical processes and dynamics are strongly controlled by terrain topography, making digital elevation models (DEM) a fundamental dataset for a range of applications. This study investigates the quality of four pan-Arctic DEMs (Arctic DEM, ASTER DEM, ALOS DEM and Copernicus DEM) within the Kalix River watershed in northern Sweden, with the aim of informing users about the quality when comparing these DEMs. The quality assessment focuses on both the vertical accuracy of the DEMs and their abilities to model two fundamental elevation derivatives, including topographic wetness index (TWI) and landform classification. Our results show that the vertical accuracy is relatively high for Arctic DEM, ALOS and Copernicus and in our study area was slightly better than those reported in official validation results. Vertical errors are mainly caused by tree cover characteristics and terrain slope. On the other hand, the high vertical accuracy does not translate directly into high quality elevation derivatives, such as TWI and landform classes, as shown by the large errors in TWI and landform classification for all four candidate DEMs. Copernicus produced elevation derivatives with results most similar to those from the reference DEM, but the errors are still relatively high, with large underestimation of TWI in land cover classes with a high likelihood of being wet. Overall, the Copernicus DEM produced the most accurate elevation derivatives, followed by slightly lower accuracies from Arctic DEM and ALOS, and the least accurate being ASTER.


2020 ◽  
Vol 11 (1) ◽  
pp. 1075-1092 ◽  
Author(s):  
Jonas Brock ◽  
Patrick Schratz ◽  
Helene Petschko ◽  
Jannes Muenchow ◽  
Mihai Micu ◽  
...  

Author(s):  
J. Drachal ◽  
A. K. Kawel

The article describes the possibility of developing an overall map of the selected area on the basis of publicly available data. Such a map would take the form designed by the author with the colors that meets his expectations and a content, which he considers to be appropriate. Among the data available it was considered the use of satellite images of the terrain in real colors and, in the form of shaded relief, digital terrain models with different resolutions of the terrain mesh. Specifically the considered data were: MODIS, Landsat 8, GTOPO-30, SRTM-30, SRTM-1, SRTM-3, ASTER. For the test area the island of Cyprus was chosen because of the importance in tourism, a relatively small area and a clearly defined boundary. In the paper there are shown and discussed various options of the Cyprus terrain image obtained synthetically from variants of Modis, Landsat and digital elevation models of different resolutions.


2019 ◽  
Vol 28 (1) ◽  
pp. 95-105 ◽  
Author(s):  
I. P. Kovalchuk ◽  
K. A. Lukianchuk ◽  
V. A. Bogdanets

The relief has a major impact on the landscape`s hydrological, geomorphological and biological processes. Many geographic information systems used elevation data as the primary data for analysis, modeling, etc. A digital elevation model (DEM) is a modern representation of the continuous variations of relief over space in digital form. Digital Elevation Models (DEMs) are important source for prediction of soil erosion parameters. The potential of global open source DEMs (SRTM, ASTER, ALOS) and their suitability for using in modeling of erosion processes are assessed in this study. Shumsky district of Ternopil region, which is located in the Western part of Ukraine, is the area of our study. The soils of Shumsky district are adverselyaffected by erosion processes. The analysis was performed on the basis of the characteristics of the hydrological network and relief. The reference DEM was generated from the hypsographic data(contours) on the 1:50000 topographical map series compiled by production units of the Main Department of Geodesy and Cartography under the Council of Ministers. The differences between the reference DEM and open source DEMs (SRTM, ASTER and ALOS) are examined. Methods of visual detection of DEM defects, profiling, correlation, and statistics were used in the comparative analysis. This research included the analysis oferrors that occurred during the generation of DEM. The vertical accuracy of these DEMs, root mean square error (RMSE), absolute and relative errors, maximum deviation, and correlation coefficient have been calculated. Vertical accuracy of DEMs has been assessed using actual heights of the sample points. The analysis shows that SRTM and ALOS DEMs are more reliable and accurate than ASTER GDEM. The results indicate that vertical accuracy of DEMs is 7,02m, 7,12 m, 7,60 mand 8,71 m for ALOS, SRTM 30, SRTM 90 and ASTER DEMs respectively. ASTER GDEM had the highest absolute, relative and root mean square errors, the highest maximum positive and negative deviation, a large difference with reference heights, and the lowest correlation coefficient. Therefore, ASTER GDEM is the least acceptable for studying the intensity and development of erosion processes. The use of global open source DEMs, compared with the vectorization of topographic maps,greatly simplifies and accelerates the modeling of erosion processes and the assessment of the erosion risk in the administrative district.


2021 ◽  
Vol 50 (1) ◽  
pp. 75-89
Author(s):  
Mark Abolins ◽  
Albert Ogden

A novel method to map and quantitatively describe very gentle folds (limb dip <5°) at cratonic cave sites was evaluated at Snail Shell and Nanna caves, central Tennessee, USA. Elevations from the global SRTM digital terrain model (DTM) were assigned to points on late Ordovician geologic contacts, and the elevations of the points were used to interpolate 28 m cell size natural neighbor digital elevation models (DEM’s) of the contacts. The global Forest Canopy Height Dataset was subtracted from the global 28 m cell size AW3D30 digital surface model (DSM) to create a DTM, and that DTM was applied in the same way. Comparison of mean and modal strikes of the interpolated surfaces with mean and modal cave passage trend shows that many passages are sub-parallel to the trend of an anticline. WithiSn 500 m of the caves, the SRTM- and AW3D30-based interpolated surfaces have mean strikes within 8° of the mean strike of an interpolated reference surface created with a high resolution (~0.76 m cell size and 10 cm RMSE) Tennessee, USA LiDAR DTM. This evaluation shows that the SRTM- and AW3D30-based method has the potential to reveal a relationship between the trend of a fold, on one hand, and cave passages, on the other, at sites where a geologic contact varies in elevation by >35 m within an area of <12.4 km2 and the mean dip of bedding is >0.9°.


Sign in / Sign up

Export Citation Format

Share Document