scholarly journals Self-Quantification Systems to Support Physical Activity: From Theory to Implementation Principles

Author(s):  
Paul Dulaud ◽  
Ines Di Loreto ◽  
Denis Mottet

Since the emergence of the quantified self movement, users aim at health behavior change, but only those who are sufficiently motivated and competent with the tools will succeed. Our literature review shows that theoretical models for quantified self exist but they are too abstract to guide the design of effective user support systems. Here, we propose principles linking theory and implementation to arrive at a hierarchical model for an adaptable and personalized self-quantification system for physical activity support. We show that such a modeling approach should include a multi-factors user model (activity, context, personality, motivation), a hierarchy of multiple time scales (week, day, hour), and a multi-criteria decision analysis (user activity preference, user measured activity, external parameters). This theoretical groundwork, which should facilitate the design of more effective solutions, has now to be validated by further empirical research.

Author(s):  
Paul Dulaud ◽  
Ines Di Loreto ◽  
Denis Mottet

Since the emergence of the quantified self movement, users aim at health behavior change, but only those who are sufficiently motivated and competent with the tools will succeed. Our literature review shows that theoretical models for quantified self exist but they are too abstract to guide the design of effective user support systems. Here, we propose principles linking theory and implementation to arrive at a hierarchical model for an adaptable and personalized self-quantification system for physical activity support. We show that such a modeling approach should include a multi-factors user model (activity, context, personality, motivation), a hierarchy of multiple time scales (week, day, hour), and a multi-criteria decision analysis (user activity preference, user measured activity, external parameters). This theoretical groundwork, which should facilitate the design of more effective solutions, has now to be validated by further empirical research.


Author(s):  
Paul Dulaud ◽  
Ines Di Loreto ◽  
Denis Mottet

Since the emergence of the quantified self movement, users aim at health behavior change, but only those who are sufficiently motivated and competent with the tools will succeed. Our literature review shows that theoretical models for quantified self exist but they are too abstract to guide the design of effective user support systems. Here, we propose principles linking theory and implementation to arrive at a hierarchical model for an adaptable and personalized self-quantification system for physical activity support. We show that such a modeling approach should include a multi-factors user model (activity, context, personality, motivation), a hierarchy of multiple time scales (week, day, hour), and a multi-criteria decision analysis (user activity preference, user measured activity, external parameters). While implementation still poses many challenges, principles linking theory to implementation should facilitate the design of effective self-quantification systems. In this way, users who wish to improve their physical activity levels could be better supported.


Author(s):  
Paul Dulaud ◽  
Ines Di Loreto ◽  
Denis Mottet

Since the emergence of the quantified self movement, users aim at health behavior change, but only those who are sufficiently motivated and competent with the tools will succeed. Our literature review shows that theoretical models for quantified self exist but they are too abstract to guide the design of effective user support systems. Here, we propose principles linking theory and implementation to arrive at a hierarchical model for an adaptable and personalized self-quantification system for physical activity support. We show that such a modeling approach should include a multi-factors user model (activity, context, personality, motivation), a hierarchy of multiple time scales (week, day, hour), and a multi-criteria decision analysis (user activity preference, user measured activity, external parameters). Although the implementation still raises many challenges, principles linking theory and implementation should facilitate the design of effective self-quantification system aimed at physical activity increase, and more widely for behavior change.


1998 ◽  
Vol 11 (1) ◽  
pp. 375-375
Author(s):  
I.L. Andronov

Theoretical models and observational evidence for various processes in magnetic cataclysmic variables are briefly reviewed. Among them: modulation of the accretion rate by the magnetic field of the white dwarf; excitation of the orientation change of the magnetic axis of the white dwarf with respect to the secondary; structure of the accretion column and its instability; mass and angular momentum transfer; magnetic activity of the secondary; high/low luminosity state transitions; QPO’s, ”shot noise” and ”red noise” in polars, intermediate polars and nova-like objects.


2008 ◽  
Vol 65 (6) ◽  
pp. 1004-1011 ◽  
Author(s):  
John T. Anderson ◽  
D. Van Holliday ◽  
Rudy Kloser ◽  
Dave G. Reid ◽  
Yvan Simard

Abstract Anderson, J. T., Holliday, D. V., Kloser, R., Reid, D. G., and Simard, Y. 2008. Acoustic seabed classification: current practice and future directions. – ICES Journal of Marine Science, 65: 1004–1011. Acoustic remote sensing of the seabed using single-beam echosounders, multibeam echosounders, and sidescan sonars combined and individually are providing technological solutions to marine-habitat mapping initiatives. We believe the science of acoustic seabed classification (ASC) is at its nascence. A comprehensive review of ASC science was undertaken by an international group of scientists under the auspices of ICES. The review was prompted by the growing need to classify and map marine ecosystems across a range of spatial scales in support of ecosystem-based science for ocean management. A review of the theory of sound-scattering from seabeds emphasizes the variety of theoretical models currently in use and the ongoing evolution of our understanding. Acoustic-signal conditioning and data quality assurance before classification using objective, repeatable procedures are important technical considerations where standardization of methods is only just beginning. The issue of temporal and spatial scales is reviewed, with emphasis on matching observational scales to those of the natural world. It is emphasized throughout that the seabed is not static but changes over multiple time-scales as a consequence of natural physical and biological processes. A summary of existing commercial ASC systems provides an introduction to existing capabilities. Verification (ground-truthing) methods are reviewed, emphasizing the difficulties of matching observational scales with acoustic-backscatter data. Survey designs for ASC explore methods that extend beyond traditional oceanographic and fisheries survey techniques. Finally, future directions for acoustic seabed classification science were identified in the key areas requiring immediate attention by the international scientific community.


2019 ◽  
Vol 2 (2) ◽  
pp. 29
Author(s):  
Yuquan Chen ◽  
Yuqi Wang ◽  
Fanxuan Meng ◽  
Zifei Du ◽  
Qun Zuo

By using the method of literature review, this paper introduces the popular theoretical models which have shown to better explain physical activity behaviors at a certain degree, summarizes the dominating theoretical models in the studies of physical activity behaviors of the elderly in China. In addition, shortcomings and future prospects are pointed out at the end.


2020 ◽  
Vol 498 (1) ◽  
pp. 1364-1381
Author(s):  
James W Johnson ◽  
David H Weinberg

ABSTRACT We investigate the impact of bursts in star formation on the predictions of one-zone chemical evolution models, adopting oxygen (O), iron (Fe), and strontium (Sr), as representative α, iron-peak, and s-process elements, respectively. To this end, we develop and make use of the Versatile Integrator for Chemical Evolution (VICE), a python package designed to handle flexible user-specified evolutionary parameters. Starbursts driven by a temporary boost of gas accretion rate create loops in [O/Fe]–[Fe/H] evolutionary tracks and a peak in the stellar [O/Fe] distribution at intermediate values. Bursts driven by a temporary boost of star formation efficiency have similar effects, and they also produce a population of α-deficient stars during the depressed star formation phase following the burst. This α-deficient population is more prominent if the outflow rate is tied to a time-averaged star formation rate (SFR) instead of the instantaneous SFR. Theoretical models of Sr production predict a strong metallicity dependence of supernova and asymptotic giant branch star yields, though comparison to data suggests an additional, nearly metallicity-independent source. Evolution of [Sr/Fe] and [Sr/O] during a starburst is complex because of this metallicity dependence and the multiple time-scales at play. Moderate amplitude (10–20 per cent) sinusoidal oscillations in SFR produce loops in [O/Fe]–[Fe/H] tracks and multiple peaks in [O/Fe] distributions, a potential source of intrinsic scatter in observed sequences. We investigate the impact of a factor ∼2 enhancement of Galactic star formation ∼2 Gyr ago, as suggested by some recent observations. VICE is publicly available at <http://pypi.org/project/vice/>.


2018 ◽  
Author(s):  
Yan Liang ◽  
◽  
Daniele J. Cherniak ◽  
Chenguang Sun

Sign in / Sign up

Export Citation Format

Share Document