scholarly journals The impact of starbursts on element abundance ratios

2020 ◽  
Vol 498 (1) ◽  
pp. 1364-1381
Author(s):  
James W Johnson ◽  
David H Weinberg

ABSTRACT We investigate the impact of bursts in star formation on the predictions of one-zone chemical evolution models, adopting oxygen (O), iron (Fe), and strontium (Sr), as representative α, iron-peak, and s-process elements, respectively. To this end, we develop and make use of the Versatile Integrator for Chemical Evolution (VICE), a python package designed to handle flexible user-specified evolutionary parameters. Starbursts driven by a temporary boost of gas accretion rate create loops in [O/Fe]–[Fe/H] evolutionary tracks and a peak in the stellar [O/Fe] distribution at intermediate values. Bursts driven by a temporary boost of star formation efficiency have similar effects, and they also produce a population of α-deficient stars during the depressed star formation phase following the burst. This α-deficient population is more prominent if the outflow rate is tied to a time-averaged star formation rate (SFR) instead of the instantaneous SFR. Theoretical models of Sr production predict a strong metallicity dependence of supernova and asymptotic giant branch star yields, though comparison to data suggests an additional, nearly metallicity-independent source. Evolution of [Sr/Fe] and [Sr/O] during a starburst is complex because of this metallicity dependence and the multiple time-scales at play. Moderate amplitude (10–20 per cent) sinusoidal oscillations in SFR produce loops in [O/Fe]–[Fe/H] tracks and multiple peaks in [O/Fe] distributions, a potential source of intrinsic scatter in observed sequences. We investigate the impact of a factor ∼2 enhancement of Galactic star formation ∼2 Gyr ago, as suggested by some recent observations. VICE is publicly available at <http://pypi.org/project/vice/>.

2004 ◽  
Vol 217 ◽  
pp. 258-263
Author(s):  
Patricia B. Tissera ◽  
Cecilia Scannapieco

We present first results of an implementation of chemical evolution in a cosmological hydrodynamical code, focusing the analysis on the effects of cooling baryons according to their metallicity. We found that simulations with primordial cooling can underestimate the star formation rate from z < 3 and by up to ≈ 20%. We constructed simulated spectra by combining the star formation and chemical history of galactic systems with spectral synthesis models and assess the impact of chemical evolution on the energy distribution.


Author(s):  
Sima Taefi Aghdam ◽  
Elham Saremi ◽  
Atefeh Javadi

NGC6822, an isolated dwarf irregular galaxy (dIrr), due to close distance, apparent isolation, and easy observation, has been always selected as a desired candidate for studying star formation and galactic evolution, without the strong gravitational influences of other systems. To derive the SFH of NGC6822, the method mentioned by Javadi et al. (2011) is used which is based on theoretical models coupled with color-magnitude diagrams (CMDs) by using directly the long period variable (LPV) stars which are mostly asymptotic giant branch (AGB) stars at their very late stage of evolution, as well as more massive red super-giant (RSG) stars according to their significant role to study the star formation rate (SFR). To calculate the SFH in the bar of the galaxy, we use more than 600 LPV stars from different catalogs of variable stars that two of the most important are Whitelock et al. (2013) and Letarte et al. (2002) that they reported the main part of the LPVs and the Carbon stars, respectively, Patrick et al. (2015) announced the RSG stars. Understanding the star formation history of NGC 6822 plays an important role in comparing the galaxy history evolution with other nearby dwarf galaxies as well as studying the nature of the evolving population of galaxies which were detected in deep redshift surveys.


2021 ◽  
Vol 504 (2) ◽  
pp. 2325-2345
Author(s):  
Emanuel Sillero ◽  
Patricia B Tissera ◽  
Diego G Lambas ◽  
Stefano Bovino ◽  
Dominik R Schleicher ◽  
...  

ABSTRACT We present p-gadget3-k, an updated version of gadget-3, that incorporates the chemistry package krome. p-gadget3-k follows the hydrodynamical and chemical evolution of cosmic structures, incorporating the chemistry and cooling of H2 and metal cooling in non-equilibrium. We performed different runs of the same ICs to assess the impact of various physical parameters and prescriptions, namely gas metallicity, molecular hydrogen formation on dust, star formation recipes including or not H2 dependence, and the effects of numerical resolution. We find that the characteristics of the simulated systems, both globally and at kpc-scales, are in good agreement with several observable properties of molecular gas in star-forming galaxies. The surface density profiles of star formation rate (SFR) and H2 are found to vary with the clumping factor and resolution. In agreement with previous results, the chemical enrichment of the gas component is found to be a key ingredient to model the formation and distribution of H2 as a function of gas density and temperature. A star formation algorithm that takes into account the H2 fraction together with a treatment for the local stellar radiation field improves the agreement with observed H2 abundances over a wide range of gas densities and with the molecular Kennicutt–Schmidt law, implying a more realistic modelling of the star formation process.


2021 ◽  
Author(s):  
Jing Zhao

&lt;p&gt;The elevated atmospheric carbon dioxide concentration (CO&lt;sub&gt;2&lt;/sub&gt;), as a key variable linking human activities and climate change, seriously affects the watershed hydrological processes. However, whether and how atmospheric CO&lt;sub&gt;2&lt;/sub&gt; influences the watershed water-energy balance dynamics at multiple time scales have not been revealed. Based on long-term hydrometeorological data, the variation of non-stationary parameter n series in the Choudhury's equation in the mainstream of the Wei River Basin (WRB), the Jing River Basin (JRB) and Beiluo River Basin (BLRB), three typical Loess Plateau regions in China, was examined. Subsequently, the Empirical Mode Decomposition method was applied to explore the impact of CO&lt;sub&gt;2&lt;/sub&gt; on watershed water-energy balance dynamics at multiple time scales. Results indicate that (1) in the context of warming and drying condition, annual n series in the WRB displays a significantly increasing trend, while that in the JRB and BLRB presents non-significantly decreasing trends; (2) the non-stationary n series was divided into 3-, 7-, 18-, exceeding 18-year time scale oscillations and a trend residual. In the WRB and BLRB, the overall variation of n was dominated by the residual, whereas in the JRB it was dominated by the 7-year time scale oscillation; (3) the relationship between CO&lt;sub&gt;2&amp;#160;&lt;/sub&gt;concentration and n series was significant in the WRB except for 3-year time scale. In the JRB, CO&lt;sub&gt;2&amp;#160;&lt;/sub&gt;concentration and n series were significantly correlated on the 7- and exceeding 7-year time scales, while in the BLRB, such a significant relationship existed only on the 18- and exceeding 18-year time scales. (4) CO&lt;sub&gt;2&lt;/sub&gt;-driven temperature rise and vegetation greening elevated the aridity index and evaporation ratio, thus impacting watershed water-energy balance dynamics. This study provided a deeper explanation for the possible impact of CO&lt;sub&gt;2&lt;/sub&gt; concentration on the watershed hydrological processes.&lt;/p&gt;


2019 ◽  
Vol 492 (2) ◽  
pp. 1706-1712
Author(s):  
Anton Vikaeus ◽  
Erik Zackrisson ◽  
Christian Binggeli

ABSTRACT The upcoming James Webb Space Telescope (JWST) will allow observations of high-redshift galaxies at fainter detection levels than ever before, and JWST surveys targeting gravitationally lensed fields are expected to bring z ≳ 6 objects with very low star formation rate (SFR) within reach of spectroscopic studies. As galaxies at lower and lower star formation activity are brought into view, many of the standard methods used in the analysis of integrated galaxy spectra are at some point bound to break down, due to violation of the assumptions of a well-sampled stellar initial mass function (IMF) and a slowly varying SFR. We argue that galaxies with SFR ∼ 0.1 M⊙ yr−1 are likely to turn up at the spectroscopic detection limit of JWST in lensed fields, and investigate to what extent star formation sampling may affect the spectral analysis of such objects. We use the slug spectral synthesis code to demonstrate that such effects are likely to have significant impacts on spectral diagnostics of, for example, the Balmer emission lines. These effects are found to stem primarily from SFRs varying rapidly on short (∼Myr) time-scales due to star formation in finite units (star clusters), whereas the effects of an undersampled IMF is deemed insignificant in comparison. In contrast, the ratio between the He ii- and H i-ionizing flux is found to be sensitive to IMF-sampling as well as ICMF-sampling (sampling of the initial cluster mass function), which may affect interpretations of galaxies containing Population III stars or other sources of hard ionizing radiation.


2019 ◽  
Vol 490 (2) ◽  
pp. 2855-2879 ◽  
Author(s):  
L Y Aaron Yung ◽  
Rachel S Somerville ◽  
Gergö Popping ◽  
Steven L Finkelstein ◽  
Harry C Ferguson ◽  
...  

ABSTRACT The long anticipated James Webb Space Telescope (JWST) will be able to directly detect large samples of galaxies at very high redshift. Using the well-established, computationally efficient Santa Cruz semi-analytic model, with recently implemented multiphase gas partitioning, and H2-based star formation recipes, we make predictions for a wide variety of galaxy properties for galaxy populations at z = 4–10. In this work, we provide forecasts for the physical properties of high-redshift galaxies and links to their photometric properties. With physical parameters calibrated only to z ∼ 0 observations, our model predictions are in good agreement with current observational constraints on stellar mass and star formation rate distribution functions up to z ∼ 8. We also provide predictions representing wide, deep, and lensed JWST survey configurations. We study the redshift evolution of key galaxy properties and the scaling relations among them. Taking advantage of our models’ high computational efficiency, we study the impact of systematically varying the model parameters. All distribution functions and scaling relations presented in this work are available at https://www.simonsfoundation.org/semi-analytic-forecasts-for-jwst/.


2020 ◽  
Vol 495 (1) ◽  
pp. 199-223 ◽  
Author(s):  
Jindra Gensior ◽  
J M Diederik Kruijssen ◽  
Benjamin W Keller

ABSTRACT Quenched galaxies are often observed to contain a strong bulge component. The key question is whether this reflects a causal connection – can star formation be quenched dynamically by bulges or the spheroids of early-type galaxies? We systematically investigate the impact of these morphological components on star formation, by performing a suite of hydrodynamical simulations of isolated galaxies containing a spheroid. We vary the bulge mass and scale radius, while the total initial stellar, halo, and gas mass are kept constant, with a gas fraction of 5 per cent. In addition, we consider two different sub-grid star formation prescriptions. The first follows most simulations in the literature by assuming a constant star formation efficiency per free-fall time, whereas in the second model it depends on the gas virial parameter, following high-resolution simulations of turbulent fragmentation. Across all simulations, central spheroids increase the gas velocity dispersion towards the galactic centre. This increases the gravitational stability of the gas disc, suppresses fragmentation and star formation, and results in galaxies hosting extremely smooth and quiescent gas discs that fall below the galaxy main sequence. These effects amplify when using the more sophisticated, dynamics-dependent star formation model. Finally, we discover a pronounced relation between the central stellar surface density and star formation rate (SFR), such that the most bulge-dominated galaxies show the strongest deviation from the main sequence. We conclude that the SFR of galaxies is not only set by the balance between accretion and feedback, but carries a (sometimes dominant) dependence on the gravitational potential.


2012 ◽  
Vol 10 (H16) ◽  
pp. 341-341
Author(s):  
Jonathan Braine

AbstractThe physical and chemical evolution of galaxies is intimately linked to star formation, We present evidence that molecular gas (H2) is transformed into stars more quickly in smaller and/or subsolar metallicity galaxies than in large spirals – which we consider to be equivalent to a star formation efficiency (SFE). In particular, we show that this is not due to uncertainties in the N(H2)/Ico conversion factor. Several possible reasons for the high SFE in galaxies like the nearby M33 or NGC 6822 are proposed which, separately or together, are the likely cause of the high SFE in this environment. We then try to estimate how much this could contribute to the increase in cosmic star formation rate density from z = 0 to z = 1.


2019 ◽  
Vol 490 (1) ◽  
pp. 665-682 ◽  
Author(s):  
M Mollá ◽  
S Wekesa ◽  
O Cavichia ◽  
Á I Díaz ◽  
B K Gibson ◽  
...  

ABSTRACT We present a 2D chemical evolution code applied to a Milky Way type Galaxy, incorporating the role of spiral arms in shaping azimuthal abundance variations, and confront the predicted behaviour with recent observations taken with integral field units. To the usual radial distribution of mass, we add the surface density of the spiral wave and study its effect on star formation and elemental abundances. We compute five different models: one with azimuthal symmetry which depends only on radius, while the other four are subjected to the effect of a spiral density wave. At early times, the imprint of the spiral density wave is carried by both the stellar and star formation surface densities; conversely, the elemental abundance pattern is less affected. At later epochs, however, differences among the models are diluted, becoming almost indistinguishable given current observational uncertainties. At the present time, the largest differences appear in the star formation rate and/or in the outer disc (R ≥ 18 kpc). The predicted azimuthal oxygen abundance patterns for t ≤ 2 Gyr are in reasonable agreement with recent observations obtained with VLT/MUSE for NGC 6754.


2016 ◽  
Vol 11 (S321) ◽  
pp. 279-279
Author(s):  
Mustafa K. Yıldız ◽  
Paolo Serra ◽  
Reynier F. Peletier ◽  
Tom A. Oosterloo ◽  
Pierre-Alain Duc

AbstractContextAccording to the ATLAS3D project, about 20 percent of all nearby early-type galaxies (D < 42 Mpc; MK < -21.5 mag; stellar mass Mstars ≳ 6 × 109 M⊙) outside clusters are surrounded by a disc or ring of low-column-density neutral hydrogen (Hi) gas with typical radii of tens of kpc, much larger than the stellar body.AimsOur aim is to understand the impact of these gas systems on the host galaxies, in particular, whether there is any recent star formation related to the Hi and effect of recent star formation on the host early-type galaxies.Methods and sampleWe analyse the distribution of star formation out to large radii by using resolved Hi images together with UV and optical images. We calculate the UV-UV and UV-optical colours in two apertures, 1-3 and 3-10 Reff. Using FUV emission as a proxy for star formation, we also estimate the integrated star formation rate in the outer regions. Our sample consists of 18 Hi-rich galaxies as well as 55 control galaxies where no Hi has been detected. We select the control sample galaxies to match the Hi-rich galaxies in stellar mass, environment, distance and stellar kinematics.ResultsIn half of the Hi-rich galaxies the radial UV profile changes slope at the position of the Hi radial profile peak. We find that the FUV-NUV and UV-optical colours in the first and second apertures of the Hi-rich galaxies are on average 0.5 and 0.8 mag bluer than the Hi-poor ones, respectively. We also find that the Hi-rich early-type galaxies have colour gradients that are almost 2 times stronger than the Hi-poor ones. we estimate the integrated star formation rate in the outer regions (R > 1 Reff) to be on average ~ 6.1×10−3 M⊙ yr−1 for the Hi-rich galaxies. We find that the gas depletion time in the outermost region (3-10 Reff) is ~ 80 Gyrs, which is similar to that estimated for the outskirts of spirals.ConclusionsStudying the stellar populations in early type galaxies with and without Hi, we find that galaxies with Hi generally show UV and UV-Optical colours in the outer parts that are bluer than those of early-type galaxies without Hi. This shows that the Hi is actively involved in recent star formation. The star formation rate in the outer regions is too low to build a stellar disc, and therefore change the morphology of the host even when integrated over several Gyrs. Star formation in outermost regions does not depend on the type of the galaxies.


Sign in / Sign up

Export Citation Format

Share Document