scholarly journals Use of High Resolution Unmanned Aerial Systems Imagery and Machine Learning to Evaluate Grain Sorghum Tolerance to Mesotrione

Author(s):  
Isaac Barnhart ◽  
Sushila Chauhaudri ◽  
Balaji Aravindhan Pandian ◽  
P.V. Vara Prasad ◽  
Ignacio A. Ciampitti ◽  
...  

Manual evaluation of crop injury to herbicides is time-consuming. Unmanned aircraft systems (UAS) and high-resolution multispectral sensors and machine learning classification techniques have the potential to save time and improve precision in the evaluation of herbicide injury in crops, including grain sorghum (Sorghum bicolor L. Moench). The objectives of this research were to (1) evaluate three supervised classification algorithms (support vector machine, maximum likelihood, and random forest) for categorizing high-resolution UAS imagery to aid in data extraction and (2) evaluate the use of vegetative indices (VIs) collected from UAV imagery as an alternative to traditional methods of visual herbicide injury assessment in mesotrione-tolerant grain sorghum breeding trials. An experiment was conducted in a randomized complete block design using a factorial treatment arrangement of three genotypes by four mesotrione doses. Herbicide injury was rated visually on a scale of 0 (no injury) to 100 (complete plant mortality). The UAS flights were flown at 9, 15, 21, 27, and 35 days after treatment. Results show the SVM algorithm to be the most consistently accurate, and high correlations (r = -0.83 to -0.94; p < 0.0001) were observed between the normalized difference vegetative index (NDVI) and ground-measured herbicide injury. Therefore we conclude that VIs collected with UAS coupled with machine learning image classification, has the potential to be an effective method of evaluating mesotrione injury in grain sorghum.

2021 ◽  
Vol 15 (01) ◽  
Author(s):  
Isaac Barnhart ◽  
Sushila Chaudhari ◽  
Balaji A. Pandian ◽  
P. V. Vara Prasad ◽  
Ignacio A. Ciampitti ◽  
...  

2020 ◽  
Vol 12 (7) ◽  
pp. 1218
Author(s):  
Laura Tuşa ◽  
Mahdi Khodadadzadeh ◽  
Cecilia Contreras ◽  
Kasra Rafiezadeh Shahi ◽  
Margret Fuchs ◽  
...  

Due to the extensive drilling performed every year in exploration campaigns for the discovery and evaluation of ore deposits, drill-core mapping is becoming an essential step. While valuable mineralogical information is extracted during core logging by on-site geologists, the process is time consuming and dependent on the observer and individual background. Hyperspectral short-wave infrared (SWIR) data is used in the mining industry as a tool to complement traditional logging techniques and to provide a rapid and non-invasive analytical method for mineralogical characterization. Additionally, Scanning Electron Microscopy-based image analyses using a Mineral Liberation Analyser (SEM-MLA) provide exhaustive high-resolution mineralogical maps, but can only be performed on small areas of the drill-cores. We propose to use machine learning algorithms to combine the two data types and upscale the quantitative SEM-MLA mineralogical data to drill-core scale. This way, quasi-quantitative maps over entire drill-core samples are obtained. Our upscaling approach increases result transparency and reproducibility by employing physical-based data acquisition (hyperspectral imaging) combined with mathematical models (machine learning). The procedure is tested on 5 drill-core samples with varying training data using random forests, support vector machines and neural network regression models. The obtained mineral abundance maps are further used for the extraction of mineralogical parameters such as mineral association.


The increased usage of the Internet and social networks allowed and enabled people to express their views, which have generated an increasing attention lately. Sentiment Analysis (SA) techniques are used to determine the polarity of information, either positive or negative, toward a given topic, including opinions. In this research, we have introduced a machine learning approach based on Support Vector Machine (SVM), Naïve Bayes (NB) and Random Forest (RF) classifiers, to find and classify extreme opinions in Arabic reviews. To achieve this, a dataset of 1500 Arabic reviews was collected from Google Play Store. In addition, a two-stage Classification process was applied to classify the reviews. In the first stage, we built a binary classifier to sort out positive from negative reviews. In the second stage, however we applied a binary classification mechanism based on a set of proposed rules that distinguishes extreme positive from positive reviews, and extreme negative from negative reviews. Four major experiments were conducted with a total of 10 different sub experiments to fulfill the two-stage process using different X-validation schemas and Term Frequency-Inverse Document Frequency feature selection method. Obtained results have indicated that SVM was the best during the first stage classification with 30% testing data, and NB was the best with 20% testing data. The results of the second stage classification indicated that SVM has scored better results in identifying extreme positive reviews when dealing with the positive dataset with an overall accuracy of 68.7% and NB showed better accuracy results in identifying extreme negative reviews when dealing with the negative dataset, with an overall accuracy of 72.8%.


Author(s):  
Ahmad Iwan Fadli ◽  
Selo Sulistyo ◽  
Sigit Wibowo

Traffic accident is a very difficult problem to handle on a large scale in a country. Indonesia is one of the most populated, developing countries that use vehicles for daily activities as its main transportation.  It is also the country with the largest number of car users in Southeast Asia, so driving safety needs to be considered. Using machine learning classification method to determine whether a driver is driving safely or not can help reduce the risk of driving accidents. We created a detection system to classify whether the driver is driving safely or unsafely using trip sensor data, which include Gyroscope, Acceleration, and GPS. The classification methods used in this study are Random Forest (RF) classification algorithm, Support Vector Machine (SVM), and Multilayer Perceptron (MLP) by improving data preprocessing using feature extraction and oversampling methods. This study shows that RF has the best performance with 98% accuracy, 98% precision, and 97% sensitivity using the proposed preprocessing stages compared to SVM or MLP.


2020 ◽  
Vol 14 ◽  

Breast Cancer (BC) is amongst the most common and leading causes of deaths in women throughout the world. Recently, classification and data analysis tools are being widely used in the medical field for diagnosis, prognosis and decision making to help lower down the risks of people dying or suffering from diseases. Advanced machine learning methods have proven to give hope for patients as this has helped the doctors in early detection of diseases like Breast Cancer that can be fatal, in support with providing accurate outcomes. However, the results highly depend on the techniques used for feature selection and classification which will produce a strong machine learning model. In this paper, a performance comparison is conducted using four classifiers which are Multilayer Perceptron (MLP), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) and Random Forest on the Wisconsin Breast Cancer dataset to spot the most effective predictors. The main goal is to apply best machine learning classification methods to predict the Breast Cancer as benign or malignant using terms such as accuracy, f-measure, precision and recall. Experimental results show that Random forest is proven to achieve the highest accuracy of 99.26% on this dataset and features, while SVM and KNN show 97.78% and 97.04% accuracy respectively. MLP shows the least accuracy of 94.07%. All the experiments are conducted using RStudio as the data mining tool platform.


2021 ◽  
Author(s):  
Timo Kumpula ◽  
Janne Mäyrä ◽  
Anton Kuzmin ◽  
Arto Viinikka ◽  
Sonja Kivinen ◽  
...  

<p>Sustainable forest management increasingly highlights the maintenance of biological diversity and requires up-to-date information on the occurrence and distribution of key ecological features in forest environments. Different proxy variables indicating species richness and quality of the sites are essential for efficient detecting and monitoring forest biodiversity. European aspen (Populus tremula L.) is a minor deciduous tree species with a high importance in maintaining biodiversity in boreal forests. Large aspen trees host hundreds of species, many of them classified as threatened. However, accurate fine-scale spatial data on aspen occurrence remains scarce and incomprehensive.</p><p> </p><p>We studied detection of aspen using different remote sensing techniques in Evo, southern Finland. Our study area of 83 km<sup>2</sup> contains both managed and protected southern boreal forests characterized by Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst), and birch (Betula pendula and pubescens L.), whereas European aspen has a relatively sparse and scattered occurrence in the area. We collected high-resolution airborne hyperspectral and airborne laser scanning data covering the whole study area and ultra-high resolution unmanned aerial vehicle (UAV) data with RGB and multispectral sensors from selected parts of the area. We tested the discrimination of aspen from other species at tree level using different machine learning methods (Support Vector Machines, Random Forest, Gradient Boosting Machine) and deep learning methods (3D convolutional neural networks).</p><p> </p><p>Airborne hyperspectral and lidar data gave excellent results with machine learning and deep learning classification methods The highest classification accuracies for aspen varied between 91-92% (F1-score). The most important wavelengths for discriminating aspen from other species included reflectance bands of red edge range (724–727 nm) and shortwave infrared (1520–1564 nm and 1684–1706 nm) (Viinikka et al. 2020; Mäyrä et al 2021). Aspen detection using RGB and multispectral data also gave good results (highest F1-score of aspen = 87%) (Kuzmin et al 2021). Different remote sensing data enabled production of a spatially explicit map of aspen occurrence in the study area. Information on aspen occurrence and abundance can significantly contribute to biodiversity management and conservation efforts in boreal forests. Our results can be further utilized in upscaling efforts aiming at aspen detection over larger geographical areas using satellite images.</p>


2018 ◽  
Vol 61 (6) ◽  
pp. 1831-1842 ◽  
Author(s):  
Yuzhen Lu ◽  
Renfu Lu

Abstract. Machine vision technology coupled with uniform illumination is now widely used for automatic sorting and grading of apples and other fruits, but it still does not have satisfactory performance for defect detection because of the large variety of defects, some of which are difficult to detect under uniform illumination. Structured-illumination reflectance imaging (SIRI) offers a new modality for imaging by using sinusoidally modulated structured illumination to obtain two sets of independent images: direct component (DC), which corresponds to conventional uniform illumination, and amplitude component (AC), which is unique for structured illumination. The objective of this study was to develop machine learning classification algorithms using DC and AC images and their combinations for enhanced detection of surface and subsurface defects of apples. A multispectral SIRI system with two phase-shifted sinusoidal illumination patterns was used to acquire images of ‘Delicious’ and ‘Golden Delicious’ apples with various types of surface and subsurface defects. DC and AC images were extracted through demodulation of the acquired images and were then enhanced using fast bi-dimensional empirical mode decomposition and subsequent image reconstruction. Defect detection algorithms were developed using random forest (RF), support vector machine (SVM), and convolutional neural network (CNN), for DC, AC, and ratio (AC divided by DC) images and their combinations. Results showed that AC images were superior to DC images for detecting subsurface defects, DC images were overall better than AC images for detecting surface defects, and ratio images were comparable to, or better than, DC and AC images for defect detection. The ensemble of DC, AC, and ratio images resulted in significantly better detection accuracies over using them individually. Among the three classifiers, CNN performed the best, with 98% detection accuracies for both varieties of apples, followed by SVM and RF. This research demonstrated that SIRI, coupled with a machine learning algorithm, can be a new, versatile, and effective modality for fruit defect detection. Keywords: Apple, Defect, Bi-dimensional empirical mode decomposition, Machine learning, Structured illumination.


2019 ◽  
Vol 58 (06) ◽  
pp. 205-212
Author(s):  
Cirruse Salehnasab ◽  
Abbas Hajifathali ◽  
Farkhondeh Asadi ◽  
Elham Roshandel ◽  
Alireza Kazemi ◽  
...  

Abstract Background The acute graft-versus-host disease (aGvHD) is the most important cause of mortality in patients receiving allogeneic hematopoietic stem cell transplantation. Given that it occurs at the stage of severe tissue damage, its diagnosis is late. With the advancement of machine learning (ML), promising real-time models to predict aGvHD have emerged. Objective This article aims to synthesize the literature on ML classification algorithms for predicting aGvHD, highlighting algorithms and important predictor variables used. Methods A systemic review of ML classification algorithms used to predict aGvHD was performed using a search of the PubMed, Embase, Web of Science, Scopus, Springer, and IEEE Xplore databases undertaken up to April 2019 based on Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statements. The studies with a focus on using the ML classification algorithms in the process of predicting of aGvHD were considered. Results After applying the inclusion and exclusion criteria, 14 studies were selected for evaluation. The results of the current analysis showed that the algorithms used were Artificial Neural Network (79%), Support Vector Machine (50%), Naive Bayes (43%), k-Nearest Neighbors (29%), Regression (29%), and Decision Trees (14%), respectively. Also, many predictor variables have been used in these studies so that we have divided them into more abstract categories, including biomarkers, demographics, infections, clinical, genes, transplants, drugs, and other variables. Conclusion Each of these ML algorithms has a particular characteristic and different proposed predictors. Therefore, it seems these ML algorithms have a high potential for predicting aGvHD if the process of modeling is performed correctly.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Philip Heraud ◽  
Patutong Chatchawal ◽  
Molin Wongwattanakul ◽  
Patcharaporn Tippayawat ◽  
Christian Doerig ◽  
...  

Abstract Background Widespread elimination of malaria requires an ultra-sensitive detection method that can detect low parasitaemia levels seen in asymptomatic carriers who act as reservoirs for further transmission of the disease, but is inexpensive and easy to deploy in the field in low income settings. It was hypothesized that a new method of malaria detection based on infrared spectroscopy, shown in the laboratory to have similar sensitivity to PCR based detection, could prove effective in detecting malaria in a field setting using cheap portable units with data management systems allowing them to be used by users inexpert in spectroscopy. This study was designed to determine whether the methodology developed in the laboratory could be translated to the field to diagnose the presence of Plasmodium in the blood of patients presenting at hospital with symptoms of malaria, as a precursor to trials testing the sensitivity of to detect asymptomatic carriers. Methods The field study tested 318 patients presenting with suspected malaria at four regional clinics in Thailand. Two portable infrared spectrometers were employed, operated from a laptop computer or a mobile telephone with in-built software that guided the user through the simple measurement steps. Diagnostic modelling and validation testing using linear and machine learning approaches was performed against the gold standard qPCR. Sample spectra from 318 patients were used for building calibration models (112 positive and 110 negative samples according to PCR testing) and independent validation testing (39 positive and 57 negatives samples by PCR). Results The machine learning classification (support vector machines; SVM) performed with 92% sensitivity (3 false negatives) and 97% specificity (2 false positives). The Area Under the Receiver Operation Curve (AUROC) for the SVM classification was 0.98. These results may be better than as stated as one of the spectroscopy false positives was infected by a Plasmodium species other than Plasmodium falciparum or Plasmodium vivax, not detected by the PCR primers employed. Conclusions In conclusion, it was demonstrated that ATR-FTIR spectroscopy could be used as an efficient and reliable malaria diagnostic tool and has the potential to be developed for use at point of care under tropical field conditions with spectra able to be analysed via a Cloud-based system, and the diagnostic results returned to the user’s mobile telephone or computer. The combination of accessibility to mass screening, high sensitivity and selectivity, low logistics requirements and portability, makes this new approach a potentially outstanding tool in the context of malaria elimination programmes. The next step in the experimental programme now underway is to reduce the sample requirements to fingerprick volumes.


Author(s):  
V. Vinodhini ◽  
Akula Vishalakshi ◽  
G. Naga Chandrika ◽  
S. Sankar ◽  
Somula Ramasubbareddy

Vasovagal syncope (VVS) refers to fainting of people with a drop in blood flow to the brain more serious disease in paraplegia patients. Precognitive diagnoses are characterized by lightheadedness, nausea, severe fatigue, and an elevated heart rate. As a result, it’s important to seek care as soon as possible after experiencing syncope. Since receiving a correct diagnosis and appropriate care, the majority of patients may avoid complications with syncope. Syncope appears to be a sign of COVID 19 in people with coronary artery disease. Furthermore, a sudden heart attack might result in acute syncope. In a few circumstances, machine learning classification techniques may not be precise. For paraplegia patients, prediction vasovagal syncope needs more precise results in order to save their lives. The aim of this paper is to use the ensemble technique to improve the accuracy of conventional machine learning algorithms. EEG (ElectroEncephaloGram) brainwave dataset from kaggle is used to implement it. The accuracy of the proposed AWET algorithm is 82%. It improves the accuracy by 17% compare to Support Vector Machine, Random Forest, Naive Bayes, and MultiLayer Perceptron classifiers.


Sign in / Sign up

Export Citation Format

Share Document