scholarly journals The Dirac Electron Consistent with Proper Gravitational and Electromagnetic Field of the Over-rotating Kerr-Newman Black Hole Solution

Author(s):  
Alexander Burinskii

We consider the Dirac electron as a nonperturbative particle-like solution consistent with its own Kerr-Newman (KN) gravitational and electromagnetic field. We develop the earlier models of the KN electron regularized by Israel and López, and consider the non-perturbative electron model as a bag model formed by Higgs mechanism of symmetry breaking. The The López regularization determines the unique shape of the electron in the form of a thin disk with a Compton radius reduced by 4π. In our model this disk is coupled with a closed circular string which is placed on the border of the disk and creates the caused by gravitation frame-dragging string tension produced by the vector potential of the Wilson loop. Using remarkable features of the Kerr-Schild coordinate system, which linearizes the Dirac equation, we obtain solutions of the Dirac equation consistent with the KN gravitational and electromagnetic field, and show that this solution takes the form of a massless relativistic string. Parallelism of this model with quantum representations in Heisenberg and Schrodinger pictures explains remarkable properties of the stringy electron model in the relativistic scattering processes.

Author(s):  
Alexander Burinskii

We consider the Dirac electron as a nonperturbative particle-like solution consistent with its own Kerr-Newman (KN) gravitational and electromagnetic field. We develop the earlier models of the KN electron regularized by Israel and López, and consider the non-perturbative electron model as a bag model formed by Higgs mechanism of symmetry breaking. The López regularization determines the unique shape of the electron in the form of a thin disk with a Compton radius reduced by 4π. In our model this disk is coupled with a closed circular string which is placed on the border of the disk and creates the caused by gravitation frame-dragging string tension produced by the vector potential of the Wilson loop. Using remarkable features of the Kerr-Schild coordinate system, which linearizes the Dirac equation, we obtain solutions of the Dirac equation consistent with the KN gravitational and electromagnetic field, and show that this solution takes the form of a massless relativistic string. Parallelism of this model with quantum representations in Heisenberg and Schrodinger pictures explains remarkable properties of the stringy electron model in the relativistic scattering processes.


Author(s):  
Alexander Burinskii

We consider the Dirac electron as a nonperturbative particle-like solution consistent with its own Kerr-Newman (KN) gravitational and electromagnetic field. We develop the earlier models of the KN electron regularized by Israel and López, and consider the non-perturbative electron model as a bag model formed by Higgs mechanism of symmetry breaking. The López regularization determines the unique shape of the electron in the form of a thin disk with a Compton radius reduced by 4π. In our model this disk is coupled with a closed circular string which is placed on the border of the disk and creates the caused by gravitation frame-dragging string tension produced by the vector potential of the Wilson loop. Using remarkable features of the Kerr-Schild coordinate system, which linearizes the Dirac equation, we obtain solutions of the Dirac equation consistent with the KN gravitational and electromagnetic field, and show that this solution takes the form of a massless relativistic string. Parallelism of this model with quantum representations in Heisenberg and Schrodinger pictures explains remarkable properties of the stringy electron model in the relativistic scattering processes.


Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Alexander Burinskii

The Dirac electron is considered as a particle-like solution consistent with its own Kerr–Newman (KN) gravitational field. In our previous works we considered the regularized by López KN solution as a bag-like soliton model formed from the Higgs field in a supersymmetric vacuum state. This bag takes the shape of a thin superconducting disk coupled with circular string placed along its perimeter. Using the unique features of the Kerr–Schild coordinate system, which linearizes Dirac equation in KN space, we obtain the solution of the Dirac equations consistent with the KN gravitational and electromagnetic field, and show that the corresponding solution takes the form of a massless relativistic string. Obvious parallelism with Heisenberg and Schrödinger pictures of quantum theory explains remarkable features of the electron in its interaction with gravity and in the relativistic scattering processes.


2020 ◽  
Author(s):  
Александр Буринский

We consider the Dirac electron as a non-perturbative particle-like solution consistent with its own Kerr-Newman (KN) gravitational field. In our previous works we regularized the model of electron suggested by Israel and Lopez on the base of KN solution. Our model of electron was shaped similar to the bag models - the thin superconducting disk coupled with circular string placed along its perimeter. The specific feature of the KN string was its orientifold (two-faced) structure. In this work we use unique features of the Kerr-Schild coordinate system, which allows us to linearize Dirac equations in KN background, and obtain the exact solutions of the Dirac equations consistent with the KN gravitational and electromagnetic field. We show that the corresponding solution take the form of a massless relativistic string. Strong parallelism with quantum theory, which appears by our treatment, explains remarkable properties of the electron in relativistic scattering processes, which allow us to consider it as a point-like particle.


Author(s):  
Aheibam Keshwarjit Singh ◽  
Irom Ablu Meitei ◽  
Telem Ibungochouba Singh ◽  
Kangujam Yugindro Singh

In this paper, we solve the Dirac Equation in curved space–time, modified by the generalized uncertainty principle, in the presence of an electromagnetic field. Using this, we study the tunneling of [Formula: see text]-spin fermions from Kerr–Newman black hole. Corrections to the Hawking temperature and entropy of the black hole due to quantum gravity effects are also discussed.


2020 ◽  
Vol 27 (4) ◽  
pp. 902-911
Author(s):  
V. G. Bagrov ◽  
D. M. Gitman ◽  
A. A. Shishmarev ◽  
A. J. D. Farias

Synchrotron radiation was originally studied by classical methods using the Liénard–Wiechert potentials of electric currents. Subsequently, quantum corrections to the classical formulas were studied, considering the emission of photons arising from electronic transitions between spectral levels, described in terms of the Dirac equation. In this paper, an intermediate approach is considered, in which electric currents generating the radiation are considered classically while the quantum nature of the radiation is taken into account exactly. Such an approximate approach may be helpful in some cases; it allows one to study one-photon and multi-photon radiation without complicating calculations using corresponding solutions of the Dirac equation. Here, exact quantum states of an electromagnetic field interacting with classical currents are constructed and their properties studied. With their help, the probability of photon emission by classical currents is calculated and relatively simple formulas for one-photon and multi-photon radiation are obtained. Using the specific circular electric current, the corresponding synchrotron radiation is calculated. The relationship between the obtained results and those known before are discussed, for example with the Schott formula, with Schwinger calculations, with one-photon radiation of scalar particles due to transitions between Landau levels, and with some previous results of calculating two-photon synchrotron radiation.


1970 ◽  
Vol 48 (16) ◽  
pp. 1935-1937 ◽  
Author(s):  
Lui Lam

Exact solutions of a Dirac electron in constant crossed electric and magnetic fields are found and given explicitly. The case of Klein–Gordon particles is shown to be a special case of ours.


It is shown in the first part how the basic formalism of the theory of spin-orbit coupling in the band theory of crystals can be deduced at once from the Dirac equation without the usual ambiguities over improper rotations associated with the formalism based on the Pauli-Schrödinger equation. In the second part it is shown that the original proofs of the time-reversal theorems given by Wigner are unnecessarily complicated.


Sign in / Sign up

Export Citation Format

Share Document