scholarly journals Worldlines in the Einstein's Elevator

Author(s):  
Mathieu Rouaud

We all have in mind Einstein's famous thought experiment in the elevator where we observe the free fall of a body and then the trajectory of a light ray. Simply here, in addition to the qualitative aspect, we carry out the exact calculation. We consider a uniformly accelerated reference frame in rectilinear translation and we show that the trajectories of the particles are ellipses centered on the horizon of the events. The frame of reference is non-inertial, the space-time is flat, the metric is non-Minkowskian and the computations are performed within the framework of special relativity. The deviation, compared to the classical case, is important close to the horizon, but small in the box, and the interest is above all theoretical and pedagogical. The study helps the student to become familiar with the concepts of metric, coordinate velocity, horizon, and, to do the analogy with the black hole.

Author(s):  
Mathieu Rouaud

We all have in mind Einstein's famous thought experiment in the elevator where we observe the free fall of a body and then the trajectory of a light ray. Simply here, in addition to the qualitative aspect, we carry out the exact calculation. We consider a uniformly accelerated reference frame in rectilinear translation and we show that the trajectories of the particles are ellipses centered on the horizon of the events. The frame of reference is non-inertial, the space-time is flat, the metric is non-Minkowskian and the computations are performed within the framework of special relativity. Some experimental consequences are discussed such as trajectory deviation, desynchronization of a falling clock and the Michelson interferometer. The differences, compared to the classical case, are important at large scale and close to the horizon, but they are small in the box where the interest is above all theoretical and pedagogical. The study helps the student to become familiar with the concepts of metric, coordinate velocity, horizon, and, to do the analogy with the black hole.


Author(s):  
Mathieu Rouaud

We all have in mind Einstein's famous thought experiment in the elevator where we observe the free fall of a body, and then the trajectory of a light ray. Simply here, in addition to the qualitative aspect, we carry out the exact calculation. We consider a uniformly accelerated reference frame in rectilinear translation, and we show that the trajectories of the particles are semi-ellipses with the center on the event horizon. The frame of reference is non-inertial, the space-time is flat, the metric is non-Minkowskian, and the computations are performed within the framework of special relativity. Some experimental consequences are discussed, such as the deviation of trajectories, the desynchronization of a falling clock, the accelerated Michelson-Morley experiment, and, finally, an experiment where a paradox appears — a particle of matter seems to go faster than light. The differences, compared to the classical case, are important at large scale and close to the horizon, but they are small in the lift where the interest is above all theoretical. The concepts of metric, coordinated velocity and horizon are discussed, and the analogy with the black hole is made.


Author(s):  
Mathieu Rouaud

We all have in mind Einstein’s famous thought experiment in the elevator where we observe the free fall of a body, and then the trajectory of a light ray. Simply here, in addition to the qualitative aspect, we carry out the exact calculation. We consider a uniformly accelerated reference frame in rectilinear translation, and we show that the trajectories of the particles are ellipses centered on the event horizon. The frame of reference is non-inertial, the space-time is flat, the metric is non-Minkowskian, and the computations are performed within the framework of special relativity. Some experimental consequences are discussed, such as the deviation of trajectories, the desynchronization of a falling clock, the accelerated Michelson-Morley experiment, and, finally, an experiment where a paradox appears — a particle of matter seems to go faster than light. The differences, compared to the classical case, are important at large scale and close to the horizon, but they are small in the lift where the interest is above all theoretical and pedagogical. The study helps the student to become familiar with the concepts of metric, coordinate velocity, horizon, and, to do the analogy with the black hole.


Author(s):  
Mathieu Rouaud

We all have in mind Einstein's famous thought experiment in the elevator where we observe the free fall of a body, and then the trajectory of a light ray. Simply here, in addition to the qualitative aspect, we carry out the exact calculation, and for the first time the worldlines equations are given. We consider a uniformly accelerated reference frame in rectilinear translation, and we show that the trajectories of the particles are semi-ellipses with the center on the event horizon. The frame of reference is non-inertial, the space-time is flat, and the computations are performed within the framework of special relativity. Some experimental consequences are discussed, especially the experiment with the accelerated Michelson-Morley interferometer is solved, and we described an experiment where a new relativistic paradox appears --- a particle of matter seems to go faster than light. The differences, compared to the classical case, are important at large scale and close to the horizon, but they are small in the lift where the interest is above all theoretical. The concepts of metric, coordinated velocity and horizon are discussed, and the analogy with the black hole is made.


2011 ◽  
Vol 33 (1) ◽  
pp. 1-11 ◽  
Author(s):  
A T Augousti ◽  
M Gawełczyk ◽  
A Siwek ◽  
A Radosz

2010 ◽  
Vol 25 (15) ◽  
pp. 3107-3120 ◽  
Author(s):  
YONG-WAN KIM ◽  
JAEDONG CHOI ◽  
YOUNG-JAI PARK

We use the global embedding Minkowski space geometries of a (3+1)-dimensional curved Reissner–Nordström (RN)–AdS black hole space–time into a (5+2)-dimensional flat space–time to define a proper local temperature, which remains finite at the event horizon, for freely falling observers outside a static black hole. Our extended results include the known limiting cases of the RN, Schwarzschild–AdS and Schwarzschild black holes.


2019 ◽  
Author(s):  
Matheus Pereira Lobo

We propose a thought experiment regarding the pullback Schwarzschild metric, considering that there is no interior of a black hole.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ning Bao ◽  
Yuta Kikuchi

Abstract In the Hayden-Preskill thought experiment, the Hawking radiation emitted before a quantum state is thrown into the black hole is used along with the radiation collected later for the purpose of decoding the quantum state. A natural question is how the recoverability is affected if the stored early radiation is damaged or subject to decoherence, and/or the decoding protocol is imperfectly performed. We study the recoverability in the thought experiment in the presence of decoherence or noise in the storage of early radiation.


1991 ◽  
Vol 32 (7) ◽  
pp. 1788-1795 ◽  
Author(s):  
Daniel Zerzion ◽  
L. P. Horwitz ◽  
R. I. Arshansky

Sign in / Sign up

Export Citation Format

Share Document