World Lines in Einstein's Elevator
We all have in mind Einstein’s famous thought experiment in the elevator where we observe the free fall of a body, and then the trajectory of a light ray. Simply here, in addition to the qualitative aspect, we carry out the exact calculation. We consider a uniformly accelerated reference frame in rectilinear translation, and we show that the trajectories of the particles are ellipses centered on the event horizon. The frame of reference is non-inertial, the space-time is flat, the metric is non-Minkowskian, and the computations are performed within the framework of special relativity. Some experimental consequences are discussed, such as the deviation of trajectories, the desynchronization of a falling clock, the accelerated Michelson-Morley experiment, and, finally, an experiment where a paradox appears — a particle of matter seems to go faster than light. The differences, compared to the classical case, are important at large scale and close to the horizon, but they are small in the lift where the interest is above all theoretical and pedagogical. The study helps the student to become familiar with the concepts of metric, coordinate velocity, horizon, and, to do the analogy with the black hole.