scholarly journals The Mucosal Barrier and Anti-Viral Immune Responses can Eliminate Portions of the Viral Population during Transmission and Early Viral Growth

Author(s):  
Athena E. Golfinos ◽  
Dane D. Gellerup ◽  
Hannah Schweigert ◽  
Jaffna Mathiaparanam ◽  
Alexis J. Balgeman ◽  
...  

Little is known about how individual virus lineages replicating during acute Human Immunodeficiency Virus or Simian Immunodeficiency Virus (HIV/SIV) infection persist into chronic infection. In this study, we use molecularly barcoded SIV (SIVmac239M) to track distinct viral lineages for 12 weeks after intravenous and intrarectal challenge in macaques. Two Mafa-A1*063+ cynomolgus macaques (Macaca fascicularis) were challenged intravenously (IV), and two Mamu-A1*001+ rhesus macaques (Macaca mulatta) were challenged intrarectally (IR) with 200,000 Infectious Units (IU) of SIVmac239M. We deep sequenced the molecular barcode from all animals over 12 weeks to characterize the diversity and persistence of virus lineages, as well as the sequences of T cell epitopes during acute SIV infection. During the first three weeks post-infection, we found ~175-950 times more unique virus lineages circulating in the animals challenged intravenously than those challenged intrarectally, suggesting that challenge route is the primary driver restricting the transmission of individual viral lineages. Additionally, the emergence of escape variants can occur on multiple virus templates simultaneously, but elimination of some templates is likely a consequence of additional host factors. These data imply that virus lineages present during acute infection can be eliminated from the virus population even after initial T cell selection.

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260010
Author(s):  
Ryan V. Moriarty ◽  
Athena E. Golfinos ◽  
Dane D. Gellerup ◽  
Hannah Schweigert ◽  
Jaffna Mathiaparanam ◽  
...  

Little is known about how specific individual viral lineages replicating systemically during acute Human Immunodeficiency Virus or Simian Immunodeficiency Virus (HIV/SIV) infection persist into chronic infection. In this study, we use molecularly barcoded SIV (SIVmac239M) to track distinct viral lineages for 12 weeks after intravenous (IV) or intrarectal (IR) challenge in macaques. Two Mafa-A1*063+ cynomolgus macaques (Macaca fascicularis, CM) were challenged IV, and two Mamu-A1*001+ rhesus macaques (Macaca mulatta, RM) were challenged IR with 200,000 Infectious Units (IU) of SIVmac239M. We sequenced the molecular barcode of SIVmac239M from all animals over the 12 weeks of the study to characterize the diversity and persistence of virus lineages. During the first three weeks post-infection, we found ~70–560 times more unique viral lineages circulating in the animals challenged IV compared to those challenged IR, which is consistent with the hypothesis that the challenge route is the primary driver restricting the transmission of individual viral lineages. We also characterized the sequences of T cell epitopes targeted during acute SIV infection, and found that the emergence of escape variants in acutely targeted epitopes can occur on multiple virus templates simultaneously, but that elimination of some of these templates is likely a consequence of additional host factors. These data imply that virus lineages present during acute infection can still be eliminated from the systemic virus population even after initial selection.


2010 ◽  
Vol 84 (21) ◽  
pp. 11569-11574 ◽  
Author(s):  
Nicholas J. Maness ◽  
Andrew D. Walsh ◽  
Shari M. Piaskowski ◽  
Jessica Furlott ◽  
Holly L. Kolar ◽  
...  

ABSTRACT Vaccines designed to elicit AIDS virus-specific CD8+ T cells should engender broad responses. Emerging data indicate that alternate reading frames (ARFs) of both human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) encode CD8+ T cell epitopes, termed cryptic epitopes. Here, we show that SIV-specific CD8+ T cells from SIV-infected rhesus macaques target 14 epitopes in eight ARFs during SIV infection. Animals recognized up to five epitopes, totaling nearly one-quarter of the anti-SIV responses. The epitopes were targeted by high-frequency responses as early as 2 weeks postinfection and in the chronic phase. Hence, previously overlooked ARF-encoded epitopes could be important components of AIDS vaccines.


2007 ◽  
Vol 81 (9) ◽  
pp. 4445-4456 ◽  
Author(s):  
L. E. Pereira ◽  
F. Villinger ◽  
N. Onlamoon ◽  
P. Bryan ◽  
A. Cardona ◽  
...  

ABSTRACT Differences in clinical outcome of simian immunodeficiency virus (SIV) infection in disease-resistant African sooty mangabeys (SM) and disease-susceptible Asian rhesus macaques (RM) prompted us to examine the role of regulatory T cells (Tregs) in these two animal models. Results from a cross-sectional study revealed maintenance of the frequency and absolute number of peripheral Tregs in chronically SIV-infected SM while a significant loss occurred in chronically SIV-infected RM compared to uninfected animals. A longitudinal study of experimentally SIV-infected animals revealed a transient increase in the frequency of Tregs from baseline values following acute infection in RM, but no change in the frequency of Tregs occurred in SM during this period. Further examination revealed a strong correlation between plasma viral load (VL) and the level of Tregs in SIV-infected RM but not SM. A correlation was also noted in SIV-infected RM that control VL spontaneously or in response to antiretroviral chemotherapy. In addition, immunofluorescent cell count assays showed that while Treg-depleted peripheral blood mononuclear cells from RM led to a significant enhancement of CD4+ and CD8+ T-cell responses to select pools of SIV peptides, there was no detectable T-cell response to the same pool of SIV peptides in Treg-depleted cells from SIV-infected SM. Our data collectively suggest that while Tregs do appear to play a role in the control of viremia and the magnitude of the SIV-specific immune response in RM, their role in disease resistance in SM remains unclear.


2010 ◽  
Vol 84 (15) ◽  
pp. 7886-7891 ◽  
Author(s):  
Levelle D. Harris ◽  
Brian Tabb ◽  
Donald L. Sodora ◽  
Mirko Paiardini ◽  
Nichole R. Klatt ◽  
...  

ABSTRACT The mechanisms underlying the AIDS resistance of natural hosts for simian immunodeficiency virus (SIV) remain unknown. Recently, it was proposed that natural SIV hosts avoid disease because their plasmacytoid dendritic cells (pDCs) are intrinsically unable to produce alpha interferon (IFN-α) in response to SIV RNA stimulation. However, here we show that (i) acute SIV infections of natural hosts are associated with a rapid and robust type I IFN response in vivo, (ii) pDCs are the principal in vivo producers of IFN-α/β at peak acute infection in lymphatic tissues, and (iii) natural SIV hosts downregulate these responses in early chronic infection. In contrast, persistently high type I IFN responses are observed during pathogenic SIV infection of rhesus macaques.


2000 ◽  
Vol 74 (20) ◽  
pp. 9388-9395 ◽  
Author(s):  
Simoy Goldstein ◽  
Charles R. Brown ◽  
Houman Dehghani ◽  
Jeffrey D. Lifson ◽  
Vanessa M. Hirsch

ABSTRACT Previous studies with simian immunodeficiency virus (SIV) infection of rhesus macaques suggested that the intrinsic susceptibility of peripheral blood mononuclear cells (PBMC) to infection with SIV in vitro was predictive of relative viremia after SIV challenge. The present study was conducted to evaluate this parameter in a well-characterized cohort of six rhesus macaques selected for marked differences in susceptibility to SIV infection in vitro. Rank order relative susceptibility of PBMC to SIVsmE543-3-infection in vitro was maintained over a 1-year period of evaluation. Differential susceptibility of different donors was maintained in CD8+T-cell-depleted PBMC, macrophages, and CD4+ T-cell lines derived by transformation of PBMC with herpesvirus saimiri, suggesting that this phenomenon is an intrinsic property of CD4+target cells. Following intravenous infection of these macaques with SIVsmE543-3, we observed a wide range in plasma viremia which followed the same rank order as the relative susceptibility established by in vitro studies. A significant correlation was observed between plasma viremia at 2 and 8 weeks postinoculation and in vitro susceptibility (P < 0.05). The observation that the two most susceptible macaques were seropositive for simian T-lymphotropic virus type 1 may suggests a role for this viral infection in enhancing susceptibility to SIV infection in vitro and in vivo. In summary, intrinsic susceptibility of CD4+ target cells appears to be an important factor influencing early virus replication patterns in vivo that should be considered in the design and interpretation of vaccine studies using the SIV/macaque model.


2000 ◽  
Vol 74 (3) ◽  
pp. 1209-1223 ◽  
Author(s):  
Lisa A. Chakrabarti ◽  
Sharon R. Lewin ◽  
Linqi Zhang ◽  
Agegnehu Gettie ◽  
Amara Luckay ◽  
...  

ABSTRACT Sooty mangabeys naturally infected with simian immunodeficiency virus (SIV) remain healthy though they harbor viral loads comparable to those in rhesus macaques that progress to AIDS. To assess the immunologic basis of disease resistance in mangabeys, we compared the effect of SIV infection on T-cell regeneration in both monkey species. Measurement of the proliferation marker Ki-67 by flow cytometry showed that mangabeys harbored proliferating T cells at a level of 3 to 4% in peripheral blood irrespective of their infection status. In contrast, rhesus macaques demonstrated a naturally high fraction of proliferating T cells (7%) that increased two- to threefold following SIV infection. Ki-67+ T cells were predominantly CD45RA−, indicating increased proliferation of memory cells in macaques. Quantitation of an episomal DNA product of T-cell receptor α rearrangement (termed α1 circle) showed that the concentration of recent thymic emigrants in blood decreased with age over a 2-log unit range in both monkey species, consistent with age-related thymic involution. SIV infection caused a limited decrease of α1 circle numbers in mangabeys as well as in macaques. Dilution of α1 circles by T-cell proliferation likely contributed to this decrease, since α1 circle numbers and Ki-67+ fractions correlated negatively. These findings are compatible with immune exhaustion mediated by abnormal T-cell proliferation, rather than with early thymic failure, in SIV-infected macaques. Normal T-cell turnover in SIV-infected mangabeys provides an explanation for the long-term maintenance of a functional immune system in these hosts.


2000 ◽  
Vol 74 (15) ◽  
pp. 6935-6945 ◽  
Author(s):  
Yasuyuki Endo ◽  
Tatsuhiko Igarashi ◽  
Yoshiaki Nishimura ◽  
Charles Buckler ◽  
Alicia Buckler-White ◽  
...  

ABSTRACT A highly pathogenic simian/human immunodeficiency virus (SHIV), SHIVDH12R, isolated from a rhesus macaque that had been treated with anti-human CD8 monoclonal antibody at the time of primary infection with the nonpathogenic, molecularly cloned SHIVDH12, induced marked and rapid CD4+ T cell loss in all rhesus macaques intravenously inoculated with 1.0 50% tissue culture infective dose (TCID50) to 4.1 × 105 TCID50s of virus. Animals inoculated with 650 TCID50s of SHIVDH12R or more experienced irreversible CD4+ T lymphocyte depletion and developed clinical disease requiring euthanasia between weeks 12 and 23 postinfection. In contrast, the CD4+ T-cell numbers in four of five monkeys receiving 25 TCID50s of SHIVDH12R or less stabilized at low levels, and these surviving animals produced antibodies capable of neutralizing SHIVDH12R. In the fifth monkey, no recovery from the CD4+ T cell decline occurred, and the animal had to be euthanized. Viral RNA levels, subsequent to the initial peak of infection but not at peak viremia, correlated with the virus inoculum size and the eventual clinical course. Both initial infection rate constants, k, and decay constants, d, were determined, but only the latter were statistically correlated to clinical outcome. The attenuating effects of reduced inoculum size were also observed when virus was inoculated by the mucosal route. Because the uncloned SHIVDH12R stock possessed the genetic properties of a lentivirus quasispecies, we were able to assess the evolution of the input virus swarm in animals surviving the acute infection by monitoring the emergence of neutralization escape viral variants.


2007 ◽  
Vol 81 (12) ◽  
pp. 6265-6275 ◽  
Author(s):  
Marlene S. Orandle ◽  
Ronald S. Veazey ◽  
Andrew A. Lackner

ABSTRACT Gastrointestinal (GI) disease is a debilitating feature of human immunodeficiency virus (HIV) infection that can occur in the absence of histopathological abnormalities or identifiable enteropathogens. However, the mechanisms of GI dysfunction are poorly understood. The present study was undertaken to characterize changes in resident and inflammatory cells in the enteric nervous system (ENS) of macaques during the acute stage of simian immunodeficiency virus (SIV) infection to gain insight into potential pathogenic mechanisms of GI disease. Ganglia from duodenum, ileum, and colon were examined in healthy and acutely infected macaques by using a combination of routine histology, double-label immunofluorescence and in situ hybridization. Evaluation of tissues from infected macaques showed progressive infiltration of myenteric ganglia by CD3+ T cells and IBA1+ macrophages beginning as early as 8 days postinfection. Quantitative image analysis revealed that the severity of myenteric ganglionitis increased with time after SIV infection and, in general, was more severe in ganglia from the small intestine than in ganglia from the colon. Despite an abundance of inflammatory cells in myenteric ganglia during acute infection, the ENS was not a target for virus infection. This study provides evidence that the ENS may be playing a role in the pathogenesis of GI disease and enteropathy in HIV-infected people.


2015 ◽  
Vol 90 (1) ◽  
pp. 545-552 ◽  
Author(s):  
Dane D. Gellerup ◽  
Alexis J. Balgeman ◽  
Chase W. Nelson ◽  
Adam J. Ericsen ◽  
Matthew Scarlotta ◽  
...  

ABSTRACT Anti-HIV CD8 T cells included in therapeutic treatments will need to target epitopes that do not accumulate escape mutations. Identifying the epitopes that do not accumulate variants but retain immunogenicity depends on both host major histocompatibility complex (MHC) genetics and the likelihood for an epitope to tolerate variation. We previously found that immune escape during acute SIV infection is conditional; the accumulation of mutations in T cell epitopes is limited, and the rate of accumulation depends on the number of epitopes being targeted. We have now tested the hypothesis that conditional immune escape extends into chronic SIV infection and that epitopes with a preserved wild-type sequence have the potential to elicit epitope-specific CD8 T cells. We deep sequenced simian immunodeficiency virus (SIV) from Mauritian cynomolgus macaques (MCMs) that were homozygous and heterozygous for the M3 MHC haplotype and had been infected with SIV for about 1 year. When interrogating variation within individual epitopes restricted by M3 MHC alleles, we found three categories of epitopes, which we called categories A, B, and C. Category B epitopes readily accumulated variants in M3-homozygous MCMs, but this was less common in M3-heterozygous MCMs. We then determined that chronic CD8 T cells specific for these epitopes were more likely preserved in the M3-heterozygous MCMs than M3-homozygous MCMs. We provide evidence that epitopes known to escape from chronic CD8 T cell responses in animals that are homozygous for a set of MHC alleles are preserved and retain immunogenicity in a host that is heterozygous for the same MHC alleles. IMPORTANCE Anti-HIV CD8 T cells that are part of therapeutic treatments will need to target epitopes that do not accumulate escape mutations. Defining these epitope sequences is a necessary precursor to designing approaches that enhance the functionality of CD8 T cells with the potential to control virus replication during chronic infection or after reactivation of latent virus. Using MHC-homozygous and -heterozygous Mauritian cynomolgus macaques, we have now obtained evidence that epitopes known to escape from chronic CD8 T cell responses in animals that are MHC homozygous are preserved and retain immunogenicity in a host that is heterozygous for the same MHC alleles. Importantly, our findings support the conditional immune escape hypothesis, such that the potential to present a greater number of CD8 T cell epitopes within a single animal can delay immune escape in targeted epitopes. As a result, certain epitope sequences can retain immunogenicity into chronic infection.


Sign in / Sign up

Export Citation Format

Share Document