scholarly journals A Comprehensive Survey of Social Based Routing for Delay Tolerant Networks

Author(s):  
Sweta Jain ◽  
Vasco N.G.J. Soares

Delay-tolerant networks (DTN) is an approach to deal with scarce network connectivity found in sparse mobile ad-hoc networks (MANETs) which makes the problem of routing messages a challenging task. DTNs have find their usefulness in many challenging environments such as tactical networks, underwater sensor networks, wildlife monitoring, disaster recovery etc. Pocket Switched Networks (PSNs) have emerged as a new application of the delay tolerant networks where network nodes are computing devices carried by humans. Hence, the study of how humans interact in their day-to-day life, the places they visit frequently, the people they meet frequently, the social groups in which they participate on regular basis etc. can help improve routing process in PSNs. This type of routing inspired from the way humans interact with each other is referred to as social based routing and had been a recent topic of research in the field of DTNs. This paper presents a comprehensive survey of the various social-based algorithms that have been designed for Delay Tolerant Networks.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Lei You ◽  
Jianbo Li ◽  
Changjiang Wei ◽  
Chenqu Dai ◽  
Jixing Xu ◽  
...  

Routing in delay tolerant networks (DTNs) is a challenge since it must handle network partitioning, long delays, and dynamic topology. Meanwhile, routing protocols of the traditional mobile ad hoc networks (MANETs) cannot work well due to the failure of its assumption that most network connections are available. In this paper, we propose a hop count based heuristic routing protocol by utilizing the information carried by the peripatetic packets in the network. A heuristic function is defined to help in making the routing decision. We formally define a custom operation for square matrices so as to transform the heuristic value calculation into matrix manipulation. Finally, the performance of our proposed algorithm is evaluated by the simulation results, which show the advantage of such self-adaptive routing protocol in the diverse circumstance of DTNs.


Author(s):  
Anamika Chauhan ◽  
Kapil Sharma ◽  
Alka Aggarwal

With the ever-escalating amount of vehicular traffic activity on the roads, the efficient management of traffic and safety of the drivers and passengers is of paramount gravity. Vehicular ad-hoc networks (VANETs) have emerged as the systems where vehicles would be perceptive of the locality and can supply the driver with required inputs to take necessary actions to alleviate the various issues. The system is designed to detect and identify essential traffic events and inform all concerned entities and take appropriate action. The characteristics of VANET are the topology is highly mobile, depends on city infrastructure, and the high speed of vehicles. These challenges result in frequent disruption of connections, long delays in delivering the messages. The challenges are overcome through the vehicular delay-tolerant network (VDTN) routing protocols are used that can facilitate communication under these network challenges. In this chapter, the authors evaluate the effect of the node density and message sizes on the performance of the various VDTN routing protocols.


Author(s):  
Vijander Singh ◽  
Linesh Raja ◽  
Deepak Panwar ◽  
Pankaj Agarwal

Due to the high mobility of vehicular nodes in VANETs, there are high chances of partitions in the network. In such a situation, the protocols developed for VANETs cannot work well and an alternative network known as DTN (delay tolerant network) is capable enough to deal with VANET characteristics. The network which does not need any immediate data delivery and can wait for time and delivery of data is known as DTN. The concept of hold and forward the message is exploited by DTN. In this chapter, the authors are providing characteristics, architecture, and applications of delay tolerant vehicular ad-hoc networks.


2011 ◽  
Author(s):  
MoonJeong Chang ◽  
Ing-Ray Chen ◽  
Fenye Bao ◽  
Jin-Hee Cho

2021 ◽  
Vol 1 (1) ◽  
pp. 1-37
Author(s):  
Michela Lorandi ◽  
Leonardo Lucio Custode ◽  
Giovanni Iacca

Routing plays a fundamental role in network applications, but it is especially challenging in Delay Tolerant Networks (DTNs). These are a kind of mobile ad hoc networks made of, e.g., (possibly, unmanned) vehicles and humans where, despite a lack of continuous connectivity, data must be transmitted while the network conditions change due to the nodes’ mobility. In these contexts, routing is NP-hard and is usually solved by heuristic “store and forward” replication-based approaches, where multiple copies of the same message are moved and stored across nodes in the hope that at least one will reach its destination. Still, the existing routing protocols produce relatively low delivery probabilities. Here, we genetically improve two routing protocols widely adopted in DTNs, namely, Epidemic and PRoPHET, in the attempt to optimize their delivery probability. First, we dissect them into their fundamental components, i.e., functionalities such as checking if a node can transfer data, or sending messages to all connections. Then, we apply Genetic Improvement (GI) to manipulate these components as terminal nodes of evolving trees. We apply this methodology, in silico, to six test cases of urban networks made of hundreds of nodes and find that GI produces consistent gains in delivery probability in four cases. We then verify if this improvement entails a worsening of other relevant network metrics, such as latency and buffer time. Finally, we compare the logics of the best evolved protocols with those of the baseline protocols, and we discuss the generalizability of the results across test cases.


2018 ◽  
Vol 7 (3.16) ◽  
pp. 76
Author(s):  
Deepak . ◽  
Rajkumar .

Vehicular ad hoc networks is an emerging area for researchers to provide intelligent transportation system to the society. It is due to the wide area of applications of VANETs interest is developed among the people from different countries to be a part of it. Therefore many projects had been started and also presently working to implement VANETs in real world scenario. The main challenge in its implementation is to provide a secure mechanism against the various attacks and threats that have the capability to bring the network performance significantly down. In this paper to overcome different types of authentication based attacks in VANETs an ECDSA based secure routing protocol SE-AODV is proposed with security features incorporated in already existing AODV routing protocol. The performance of SE-AODV is evaluated and compared with original AODV and AODV with black hole attack (BH-AODV). The SE-AODV shows better performance with the parameters used for comparison with the variation in vehicle density, speed of vehicles and simulation time. 


Sign in / Sign up

Export Citation Format

Share Document