delay tolerant network
Recently Published Documents


TOTAL DOCUMENTS

451
(FIVE YEARS 113)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Sirajo Abdullahi Bakura ◽  
Alain Lambert ◽  
Thomas Nowak

In Delay-Tolerant Networks (DTNs), humans are the main carriers of mobile devices, signifying that human mobility can be exploited by extracting nodes’ interests, social behavior, and spatiotemporal features for the performance evaluation of DTNs protocols. This paper presents a new mobility model that describes students’ daily activities in a campus environment. Unlike the conventional random walk models, which use a free space environment, our model includes a collision-avoidance technique that generates an escape path upon encountering obstacles of different shapes and sizes that obstruct pedestrian movement. We evaluate the model’s usefulness by comparing the distributions of its synthetic traces with realistic traces in terms of spatial, temporal, and connectivity features of human mobility. Similarly, we analyze the concept of dynamic movement clusters observed on the location-based trajectories of the studied real traces. The model synthetically generates traces with the distribution of the intercluster travel distance, intracluster travel distance, direction of movement, contact duration, intercontact time, and pause time similar to the distribution of real traces.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7192
Author(s):  
Imtiaz Mahmud ◽  
You-Ze Cho

Energy-efficient routing has become a critical issue for advanced energy-hungry unmanned aerial vehicles (UAVs). Routing in a flying ad hoc network is always challenging and becomes even more critical when a small number of UAVs must cover a large area. The routing protocols based on the delay-tolerant network (DTN) are best suited for such scenarios. However, traditional DTN-based routing protocols depend on data dissemination to offer a better packet delivery ratio, leading to congestion and excess transmissions, causing heavy and unnecessary energy consumption. We propose a location estimation-based congestion-aware routing protocol (LECAR) to balance these two issues. Considering outdated location information, LECAR takes advantage of the mobility model to estimate the current location of the destination. In addition, LECAR routes a packet by considering both the distance to destination and buffer occupancy of the neighboring UAVs. Simulation results show that LECAR could ensure both a high packet delivery ratio and low energy consumption. Moreover, LECAR could provide a minimal number of transmissions, while minimizing the number of copies per packet at a time.


Author(s):  
Rahul Sachdeva ◽  
◽  
Amita Dev ◽  

Opportunistic Networks can be defined as Delay Tolerant Network, which are formed dynamically with participating nodes’ help. Opportunistic Networks follows Store-Carry-Forward principle to deliver/route the data in the network. Routing in Opportunistic Network starts with the Seed Node (Source Node) which delivers the data with the help of Intermediate nodes. Intermediate nodes store the data while roaming in the network until it comes in contact with appropriate forwarding node (relay node) or destination node itself. An extensive literature survey is performed to analyse various routing protocols defined for Opportunistic Network. With mobility induced routing, establishing and maintaining the routing path is a major challenge. Further, Store-Carry-Forward routing paradigm imposes various challenges while implementing and executing the network. Due to the unavailability of the suitable relay node, data needs to be stored within the Node’s Memory, imposes buffer storage issues at the node level. Also, uncontrolled flooding may impose link-level Congestion and treated as overhead to maintain the network. Another major challenge can be maintaining the energy level of the nodes in the network. Recently developed ONE (Opportunistic Network Environment) Simulator is used to simulate and emulate the environment required by Opportunistic Network. Along with the extensive literature survey of the protocols, few of the existing protocols viz. Direct Delivery, ProPHET, Epidemic and Spray & Wait Routing are implemented using ONE Simulator to analyse their performance while in execution. Results are being compared, and the researchers’ future direction is identified to address the open problems and challenges in Opportunistic Network.


Author(s):  
Musa Otaru ◽  
Abdulkareem Adinoyi ◽  
Mohammed Ajiya ◽  
Mohammed Aljlayl ◽  
Halim Yanikomeroglu

Author(s):  
Eugene Tikhonov ◽  
Donat Schneps-Schneppe ◽  
Dmitry Namiot

The paper is devoted to the analysis of the effectiveness of the DTN (delay tolerant network) system in a communication network on a railway line. Trains act as moving objects that are sending and receiving messages to/from an external network. Trains may also transmit telemetry collected during movement. The article presents data on the effectiveness of the DTN network with various protocols in terms of reducing the delay in the message and telemetry delivery and in increasing the total number of delivered messages in the railway scenario. An analysis of railway lines with various loads and different coverage of mobile networks was made. These models are based on real railway maps and train schedules. The effectiveness of DTN during migration to networks of a higher data rate (5G) and networks with satellite connection of trains is discussed.


2021 ◽  
pp. 3-15
Author(s):  
Siddhartha Chatterjee ◽  
Mauparna Nandan ◽  
Ahona Ghosh ◽  
Swarnali Banik

Computers ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 119
Author(s):  
Filipe B. Teixeira ◽  
Bruno M. Ferreira ◽  
Nuno Moreira ◽  
Nuno Abreu ◽  
Murillo Villa ◽  
...  

Autonomous Underwater Vehicles (AUVs) are seen as a safe and cost-effective platforms for performing a myriad of underwater missions. These vehicles are equipped with multiple sensors which, combined with their long endurance, can produce large amounts of data, especially when used for video capturing. These data need to be transferred to the surface to be processed and analyzed. When considering deep sea operations, where surfacing before the end of the mission may be unpractical, the communication is limited to low bitrate acoustic communications, which make unfeasible the timely transmission of large amounts of data unfeasible. The usage of AUVs as data mules is an alternative communications solution. Data mules can be used to establish a broadband data link by combining short-range, high bitrate communications (e.g., RF and wireless optical) with a Delay Tolerant Network approach. This paper presents an enhanced version of UDMSim, a novel simulation platform for data muling communications. UDMSim is built upon a new realistic AUV Motion and Localization (AML) simulator and Network Simulator 3 (ns-3). It can simulate the position of the data mules, including localization errors, realistic position control adjustments, the received signal, the realistic throughput adjustments, and connection losses due to the fast SNR change observed underwater. The enhanced version includes a more realistic AML simulator and the antenna radiation patterns to help evaluating the design and relative placement of underwater antennas. The results obtained using UDMSim show a good match with the experimental results achieved using an underwater testbed. UDMSim is made available to the community to support easy and faster evaluation of underwater data muling oriented communications solutions and to enable offline replication of real world experiments.


Sign in / Sign up

Export Citation Format

Share Document