scholarly journals Real-Time Smoke Simulation based on Vortex Method

Author(s):  
Fei Wan ◽  
Jingpu Zhang ◽  
Lizheng Guo ◽  
Yunchang Liu

In this paper, we use three different experimental methods (particle method, grid method and hybrid method) to model and simulate the smoke from the perspective of fluid dynamics. Through the comparison of different methods, we conclude: The particle method can avoid the numerical dissipation problem caused by grid calculation, but it also brings problems such as the distortion of the trajectory of the example. The grid method is accurate in calculation, but it is prone to numerical dissipation and loss of details. Finally, we choose the hybrid method to store the vorticity in the form of particles in vortex particles, avoiding the numerical dissipation problem caused by the use of grids, and including rich turbulence, which perfectly shows the simulation effect of smoke.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Fengquan Zhang ◽  
Qiuming Wei ◽  
Zhaohui Wu

In digital production environments, high-quality visual effects play a key role in our mobile device such as game and film. The simulation of fluid animation with free surface is an important area in computer graphic. However, the tracking of fluid surface is a challenging problem because of its instability. In this paper, a coupled grid-particle method for fluid animation surface tracking and detail preserving is proposed. Firstly, based on the nonequilibrium extrapolation method, we design a novel method for reconstructing distribution functions (DFs) of interface grids of lattice Boltzmann method (LBM) and couple the reconstruction method with LBM and volume of fluid (VOF) to track the free surface, which can obtain the accurate surface. Secondly, in order to avoid the loss of details caused by weaknesses in the traditional LBM-VOF method, we design a coupled grid-particle method that not only makes full use of the advantages of the coupled grid-particle method but also realizes the two-way coupling between grid method and particle method. Furthermore, for achieving the real-time requirements of fluid animation, we use GPU parallel computing to accelerate the simulation and use an improved screen space fluid (SSF) rendering method for realistic rendering. The various experiments show that this work can track the fluid surface with high precision and preserve the details of the fluid surface, and it also achieves good real-time performance in large-scale fluid simulation.


2018 ◽  
Vol 2018.31 (0) ◽  
pp. 293
Author(s):  
Naoki NAKAYA ◽  
Mitsuteru ASAI ◽  
Keita OGASAWARA ◽  
Mikito FURUICHI ◽  
Daisuke NISHIURA

2011 ◽  
Vol 31 (1) ◽  
pp. 289-292
Author(s):  
Zhong-hua LU ◽  
Ding-fang CHEN

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 49
Author(s):  
Zheng Yuan ◽  
Jin Jiang ◽  
Jun Zang ◽  
Qihu Sheng ◽  
Ke Sun ◽  
...  

In the array design of the vertical axis wind turbines (VAWT), the wake effect of the upstream VAWT on the downstream VAWT needs to be considered. In order to simulate the velocity distribution of a VAWT wake rapidly, a new two-dimensional numerical method is proposed, which can make the array design easier and faster. In this new approach, the finite vortex method and vortex particle method are combined to simulate the generation and evolution of the vortex, respectively, the fast multipole method (FMM) is used to accelerate the calculation. Based on a characteristic of the VAWT wake, that is, the velocity distribution can be fitted into a power-law function, a new correction model is introduced to correct the three-dimensional effect of the VAWT wake. Finally, the simulation results can be approximated to the published experimental results in the first-order. As a new numerical method to simulate the complex VAWT wake, this paper proves the feasibility of the method and makes a preliminary validation. This method is not used to simulate the complex three-dimensional turbulent evolution but to simulate the velocity distribution quickly and relatively accurately, which meets the requirement for rapid simulation in the preliminary array design.


Sign in / Sign up

Export Citation Format

Share Document