Real Time Dense Smoke Simulation Based Particle System

Author(s):  
NengWen Zhuo ◽  
Yunbo Rao
Author(s):  
Fei Wan ◽  
Jingpu Zhang ◽  
Lizheng Guo ◽  
Yunchang Liu

In this paper, we use three different experimental methods (particle method, grid method and hybrid method) to model and simulate the smoke from the perspective of fluid dynamics. Through the comparison of different methods, we conclude: The particle method can avoid the numerical dissipation problem caused by grid calculation, but it also brings problems such as the distortion of the trajectory of the example. The grid method is accurate in calculation, but it is prone to numerical dissipation and loss of details. Finally, we choose the hybrid method to store the vorticity in the form of particles in vortex particles, avoiding the numerical dissipation problem caused by the use of grids, and including rich turbulence, which perfectly shows the simulation effect of smoke.


2013 ◽  
Vol 373-375 ◽  
pp. 1168-1171 ◽  
Author(s):  
Hong Yan Lv ◽  
Fang Liu

Snowfall process is analyzed from the perspective of computer simulation in this paper, the dynamic properties and the static properties of snow particles are abstracted based on particle system theory. The snow particles movement is simulated with wind and no wind. To solve the problems of the blur of snowing environment and firn phenomena, the paper puts forward a method of applying pulverization to snowing virtual environment. The tests show that the simulation methods of snowfall and pulverization are effective and real, which are suit for real-time virtual environment.


2011 ◽  
Vol 230-232 ◽  
pp. 26-30 ◽  
Author(s):  
Yong Song Zhan ◽  
Wen Zhao Liu

To achieve photorealistic special effect for the industry of virtual reality, this paper proposed a real-time smoke simulation technique using particle system. Firstly, the component of particle system is discussed according to the requirement of virtual reality. Secondly, a stable scheme is employed to solve the physical equation regulating the behavior of smoke, which is modeled by the particle system. Thirdly, the object-oriented program scheme of particle system is presented in detail. Experiment results show the robustness and feasibility of the proposed technique.


2012 ◽  
Vol 195-196 ◽  
pp. 723-727
Author(s):  
Wei Wei ◽  
Yan Qiong Huang

This paper proposed a method of flame simulation based on Lagrange process and chemical composition, which was non-grid and the problems associated with grids was overcome. The turbulence movement of flame was described by Lagrange process and chemical composition was added into flame simulation which increased the authenticity of flame. For real-time applications, this paper simplified the EMST model. GPU-based particle system combined with OpenGL VBO and PBO unique technology was used to accelerate finally, the speed of vertex and pixel data interaction between CPU and GPU increased two orders of magnitude, frame rate of rendering increased by 30%, which achieved fast dynamic flame real-time simulation.


2009 ◽  
Vol 28 (12) ◽  
pp. 3007-3009
Author(s):  
Wang-gen WAN ◽  
Ji-cheng LIN ◽  
Xiao-qing YU ◽  
Huan DING ◽  
Xiao-hui TAN

2011 ◽  
Vol 31 (1) ◽  
pp. 289-292
Author(s):  
Zhong-hua LU ◽  
Ding-fang CHEN

Lab on a Chip ◽  
2017 ◽  
Vol 17 (24) ◽  
pp. 4294-4302 ◽  
Author(s):  
Franziska D. Zitzmann ◽  
Heinz-Georg Jahnke ◽  
Felix Nitschke ◽  
Annette G. Beck-Sickinger ◽  
Bernd Abel ◽  
...  

We present a FEM simulation based step-by-step development of a microelectrode array integrated into a microfluidic chip for the non-invasive real-time monitoring of living cells.


Sign in / Sign up

Export Citation Format

Share Document