scholarly journals Linear Confinement of a Scalar Particle Under Linear Central Potential Induced by the Effects of Violation of Lorentz Symmetry framework

Author(s):  
Faizuddin Ahmed

The relativistic quantum motion of a scalar particle under the effects of violation of the Lorentz symmetry in the presence of a linear confining potential is investigated. We see that the solution of the bound state to the modified Klein-Gordon equation can be obtained and a quantum effect characterized by the dependence of the magnetic field on the quantum numbers of the system is observed

Author(s):  
Faizuddin Ahmed

In this paper, we consider the effects of a radial electric field and a constant magnetic field induced by Lorentz symmetry violation on a generalized relativistic quantum oscillator by choosing a function f(r) = b1 r + b2/r in the equation subject to a Cornell-type potential S(r) = ηL r + ηc/ r introduce by modifying the mass term in the equation. We show that the analytical solutions to the Klein-Gordon oscillator can be achieved, and a quantum effect is observed due to the dependence of the angular frequency of the oscillator on the quantum numbers of the system


Author(s):  
Faizuddin Ahmed

We investigate the generalized Klein–Gordon (KG)-oscillator under the Lorentz symmetry breaking effects, where a linear electric and constant magnetic field is considered, and analyze its effects on the relativistic quantum oscillator. Furthermore, the behavior of the quantum oscillator in the presence of a Cornell-type scalar potential is analyzed and the solution of the bound state is obtained. We see that the analytical solution to the generalized KG-oscillator can be achieved and the angular frequency of the oscillator depends on the quantum numbers of the system.


Author(s):  
Faizuddin Ahmed

In this work, we investigate the behaviour of a relativistic scalar particle in the background of the Lorentz symmetry violation determined by a tensor (KF)µναβ out of the Standard Model Extension. A linear electric field and a uniform magnetic can be induced by the violation of the Lorentz symmetry breaking effects, and analyze the behaviour of the scalar particle. We see that the analytical solution to the KG-equation can be achieved, and a quantum effect characterized by the dependence of the magnetic field on the quantum numbers is observed


2016 ◽  
Vol 31 (07) ◽  
pp. 1650026 ◽  
Author(s):  
H. Belich ◽  
K. Bakke

The behavior of a relativistic scalar particle subject to a scalar potential under the effects of the violation of the Lorentz symmetry in the cosmic string space–time is discussed. It is considered two possible scenarios of the Lorentz symmetry breaking in the CPT-even gauge sector of the Standard Model Extension defined by a tensor [Formula: see text]. Then, by introducing a scalar potential as a modification of the mass term of the Klein–Gordon equation, it is shown that the Klein–Gordon equation in the cosmic string space–time is modified by the effects of the Lorentz symmetry violation backgrounds and bound state solution to the Klein–Gordon equation can be obtained.


Author(s):  
Faizuddin Ahmed

In this work, we study a Klein-Gordon oscillator subject to Cornelltype potential in the background of the Lorentz symmetry violation determined by a tensor out of the Standard Model Extension. We introduce a Cornell-type potential S(r) = (η_L\,r + \frac{η_c}{r} ) by modifying the mass term via transformation $M → M + S(r)$ and then coupled oscillator with scalar particle by replacing the momentum operator $\vec{p}→ (\vec{p}+ i\,M\,ω\,\vec{r})$ in the relativistic wave equation. We see that the analytical solution to the Klein-Gordon oscillator equation can be achieved, and a quantum effect characterized by the dependence of the angular frequency of the oscillator on the quantum numbers of the relativistic system is observed


2019 ◽  
Vol 34 (38) ◽  
pp. 1950314 ◽  
Author(s):  
Faizuddin Ahmed

In this work, we investigate the relativistic quantum dynamics of spin-0 particles in the background of (1 + 2)-dimensional Gürses spacetime [M. Gürses, Class. Quantum Grav. 11, 2585 (1994)] with interactions. We solve the Klein–Gordon equation subject to Cornell-type scalar potential in the considered framework, and evaluate the energy eigenvalues and corresponding wave functions, in detail.


Author(s):  
Faizuddin Ahmed

The relativistic quantum dynamics of a spin-0 scalar particle under the effects of the violation of Lorentz symmetry in the presence of a non-electromagnetic potential is analyzed. The central potential induced by the Lorentz symmetry violation is a linear electric and constant magnetic field and, analyze the effects on the eigenvalues and the wave function. We see there is a dependence of the linear charge density on the quantum numbers of the system


Author(s):  
Faizuddin Ahmed

In this paper, effects of Lorentz symmetry violation determined by a tensor field [Formula: see text] out of the Standard Model Extension on a modified quantum oscillator field in the presence of Cornell-type scalar potential are analyzed. We first introduced a scalar potential [Formula: see text] by modifying the mass square term via transformation [Formula: see text] in the Klein–Gordon equation, and then replace the momentum operator [Formula: see text], where [Formula: see text] is an arbitrary function other than [Formula: see text] to study the modified Klein–Gordon oscillator. We solve the wave equation and obtain the analytical bound-states solutions and see the dependence of oscillator frequency [Formula: see text] on the quantum numbers [Formula: see text] as well as on Lorentz-violating parameters with the potential which shows a quantum effect.


Author(s):  
Faizuddin Ahmed

In this work, we investigate the behaviour of relativistic quantum oscillator under the effects of Lorentz symmetry violation determined by a tensor $(K_F)_{\mu\nu\alpha\beta}$ out of the Standard Model Extension. We analyze this relativistic system under an inverse radial electric field and a constant magnetic field induced by Lorentz symmetry violation. We see that the presence of Lorentz symmetry breaking terms modified the energy spectrum of the system, and a quantum effect arise due to the dependence of the linear charge density on the quantum numbers of the system


2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


Sign in / Sign up

Export Citation Format

Share Document