linear charge density
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 11 (21) ◽  
pp. 10142
Author(s):  
Małgorzata Matusiak ◽  
Sławomir Kadłubowski ◽  
Piotr Ulański

Carbon-centered radicals have been randomly generated on the chains of poly(acrylic acid), PAA, the simplest synthetic anionic polyelectrolyte, by pulse-irradiating its dilute, oxygen-free aqueous solutions by 6 MeV electron beam. In some experiments, oligo(acrylic acid), OAA, and propionic acid, PA, were used as PAA models. Recombination kinetics of PAA radicals has been followed by fast spectrophotometry. A strong pH dependence of radical lifetime on pH, and thus on the linear charge density due to deprotonated carboxylate groups, has been confirmed, while a weaker amplitude of pH dependence was observed for OAA and PA. Decay kinetics of PAA radicals in the protonated state, at pH 2, have been studied in some detail. At moderate doses of ionizing radiation, resulting in a moderate average initial number of radicals per chain, ZR0, the decay can be satisfactorily described by a second-order kinetic model, but a somewhat better fit is obtained by using a dispersive kinetics approach. While for a constant polymer concentration the reciprocal half-lives are proportional to the initial radical concentrations, such a data series for different PAA concentrations do not overlap, indicating that the overall radical concentration is not the decisive factor controlling the kinetics. Arranging all data, in the form of second-order rate constants, as a function of the average initial number of radicals per chain allows one to obtain a common dependence. The latter seems to consist of two parts: a horizontal one at low ZR0 and another one of positive slope at higher ZR0. This is interpreted as two kinetic regimes where two distinct reactions dominate, intermolecular and intramolecular recombination, respectively. Comparison of the low ZR0 data with calculations based on the translational diffusion model indicate that the latter is not the rate-controlling process in intermolecular recombination of polymer radicals; segmental diffusion is the more likely candidate.


2021 ◽  
Author(s):  
Matthias Wessling

The transport selectivity of different cations through cation exchange membranes (CEMs) could be estimated with the partition coefficient (K_j^i) and the cation mobility ratio in the membrane ((u_m^i)⁄(u_m^j )), which in turn can be related to corresponding membrane conductivity and dimensional swelling degree data [Journal of Membrane Science, 2020, 597, 117645]. This method has been validated in two hydrocarbon-based CEMs, and the obtained K+/Na+ selectivity equals to the one obtained with conventional electrodialysis (ED) method. However, the K+/Na+ selectivity of perfluorosulfonic acid (PFSA) membranes, and the bi-/monovalent cation (Mg2+/Na+) selectivity of all three types of CEMs estimated with this ionic conductivity experimental approach deviate noticeably from corresponding values obtained with ED. In this work, it is proved that this deviation is mostly due to the simplification of cation activity coefficients in the membrane. Here, the cation activity coefficients in three types of CEMs are calculated according to Manning`s counter-ion condensation model. In this model, the Manning parameter (ξ) characterizing the dimensionless linear charge density is determined by the average distance between two adjacent fixed sulfonate groups (b) and the permittivity of hydrated membranes (ε). In hydrocarbon-based CEMs, the average distance between fixed sulfonate groups can be estimated by assuming homogeneous distribution of the fixed groups, while in PFSA membranes three representative structure models are employed to estimate this average distance. After accounting for the cation activity coefficients in the membrane, the cation transport selectivity obtained with the ionic conductivity experimental approach agrees well with the selectivity obtained with the ED method. This work shows the importance of cation activity coefficients in the membrane phase in interpreting the membrane transport properties, and complements the proposed conductivity approach to characterize the counter-ion selectivity of ion exchange membranes.


Author(s):  
Faizuddin Ahmed

The relativistic quantum dynamics of a spin-0 scalar particle under the effects of the violation of Lorentz symmetry in the presence of a non-electromagnetic potential is analyzed. The central potential induced by the Lorentz symmetry violation is a linear electric and constant magnetic field and, analyze the effects on the eigenvalues and the wave function. We see there is a dependence of the linear charge density on the quantum numbers of the system


Author(s):  
Faizuddin Ahmed

In this work, we investigate the behaviour of relativistic quantum oscillator under the effects of Lorentz symmetry violation determined by a tensor $(K_F)_{\mu\nu\alpha\beta}$ out of the Standard Model Extension. We analyze this relativistic system under an inverse radial electric field and a constant magnetic field induced by Lorentz symmetry violation. We see that the presence of Lorentz symmetry breaking terms modified the energy spectrum of the system, and a quantum effect arise due to the dependence of the linear charge density on the quantum numbers of the system


2020 ◽  
Vol 55 ◽  
pp. 109-116
Author(s):  
Ya.M. Olikh ◽  

We studied temperature, amplitude and time dependencies of electrophysical parameters in GaN/Al0,2Ga0,8N/GaN/AlN structures when the ultrasound (US) was switched on/off (fUS = 9 MHz). We found out the charge carriers concentration n(Т) increases and the mobility μH(Т) decreases under the ultrasonic loading. With decreasing the temperature, the effect of acoustic induced changes increases. When US switches on/off, long-term (up to ~ 500 s) relaxation of the acoustic conductivity US(t) is observed, with increasing the amplitude of the ultrasound at low temperatures the acoustic conductivity increases exponentially, and at high ones decreases exponentially. It is established that the main mechanisms of charge carrier scattering at low temperatures (T ≤ 150 K) are ionized centers scattering and dislocations scattering; at high temperatures (T > 200 K) the charge carriers mobility is limited by polar optical phonons scattering. An acoustic deformation mechanism of charge carrier redistribution as a result of acoustic lattice deformation and corresponding additional structure piezopolarization is proposed. In our opinion, the determining factor that contributes to these effects, is the high density of boundary dislocations, as well as the change in the linear charge density on the dislocations in the process of their forced oscillations in the field of an external ultrasonic deformation. We have also considered an alternative mechanism that related with an acoustic induced (AI) transformation of metastable DX centers and can occur simultaneously. The mechanism of AI concentration n(Т) increase in this model is associated with a decrease of the barrier for an electron capture in DX0-state as a result of a periodic change distance between possible positions of the donor atoms (at the lattice node and non-central DX¯-state). To study the effect allows to obtain information both about such defect structure of the material and about the nature of changes in its macroscopic characteristics under the ultrasonic loading influence. From a practical point of view, it leads to the search for new opportunities for using of ultrasound for control the physical parameters kinetics of semiconductor structures.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Kai Liu ◽  
Jiadong Qiu

One-step raise excavation with burn cut is a kind of technology which use the drilling and blasting method to excavate the raise quickly. Due to the limitation of the free surface in burn cut, determination of cut parameters such as the length of burden and diameters of empty hole and charge hole is important to achieve a good effect of cut blasting. Meanwhile, the choice of the cut model is also crucial to form a proper opening. In this study, a modified Holmquist-Johnson-Cook (HJC) model, in which the tension-compression damage model and tension-compression strain rate effect model are considered, is embedded in the LS-DYNA software to investigate the damage evolution of rock in cut blasting. A simplified numerical model of burn cut is built in the LS-DYNA. The numerical results indicate that there is a threshold value of the burden length to maximize the opening. The empty hole has the effect of transferring blasting energy, and the effect becomes more obvious with the increase of the hole size. Moreover, the linear charge density of the prime cut hole can affect the compression and tension damage. Further, the comparison among four typical burn cut models are conducted based on numerical results. It demonstrates that triangular prism cut and doliform cut, which have more empty holes arrangement surrounding the prime cut hole, are better than spiral cut and diamond cut that with less empty holes locating one side of the prime cut hole in terms of energy efficiency and damage zone control.


2020 ◽  
Vol 331 ◽  
pp. 127320 ◽  
Author(s):  
Weiping Jin ◽  
Zhifeng Wang ◽  
Dengfeng Peng ◽  
Wangyang Shen ◽  
Zhenzhou Zhu ◽  
...  

2019 ◽  
Vol 20 (24) ◽  
pp. 6217
Author(s):  
Maria Jansson ◽  
Marie Skepö

The addition of polyelectrolytes (PEs) to suspensions of charged colloids, such as nanoplatelets (NPs), is of great interest due to their specific feature of being either a stabilizing or a destabilizing agent. Here, the complexation between a PE and oppositely charged NPs is studied utilizing coarse-grained molecular dynamics simulations based on the continuum model. The complex formation is evaluated with respect to the stoichiometric charge-ratio within the system, as well as by the alternation of the chain properties. It is found that the formed complexes can possess either an extended or a compact shape. Moreover, it is observed that the chain can become overcharged by the oppositely charged NPs. With an increase in chain length, or a decrease in chain flexibility, the complex obtains a more extended shape, where the NPs are less tightly bound to the PE. The latter is also true when reducing the total charge of the chain by varying the linear charge density, whereas in this case, the chain contracts. With our coarse-grained model and molecular dynamics simulations, we are able to predict the composition and the shape of the formed complex and how it is affected by the characteristics of the chain. The take-home message is that the complexation between PEs and NPs results in a versatile and rich state diagram, which indeed is difficult to predict, and dependent on the properties of the chain and the model used. Thus, we propose that the present model can be a useful tool to achieve an understanding of the PE-NPs complexation, a system commonly used in industrial and in technological processes.


2019 ◽  
Vol 60 (11) ◽  
pp. 40-47
Author(s):  
Natalya N. Smirnova ◽  

The interaction of sulfonate-containing aromatic poly- and copolyamides with acrylonitrile copolymers with N,N-dimethyl-N,N-diallylammonium chloride (DMDAAC) and N,N-diethylaminoethylmethacrylate (DEAEM) in organic and water-organic solutions was studied. It was shown that as a result of macromolecular reactions interpolyelectrolyte complexes (IPEC) forms. They are stabilized mainly by electrostatic forces. To characterize the interpolyelectrolyte complexes composition the φ parameter was used, that defines as the ratio of corresponding functional groups molar concentrations of interacting polyelectrolytes. The transformation degree in interpolymer reactions θ was calculated as the ratio of the salt bonds number between polyions to their maximum possible number. It was shown that the main factors determining the composition and structure of forming interpolyelectrolyte complexes are linear charge density of polyelectrolytes, the nature and composition of the solvent in which interpolymer reactions occurs. It is possible to obtain IPEC, the composition of which for the same polycation will vary from φ = 2.5 to φ = 1.0, changing these factors. It was found that at the complexation process is not accompanied by a change in the phase state of the interpolymer system, when the concentration of units with sulfonate groups in the macromolecular polyamide chain 5 mol.%. It was found that the introduction of polycation leads to the formation of IPEC structures in the form of particles with an average size of ~217.7 nm for poly-4,4'-(2-sodium sulfonate) – diphenylaminisophthalamide and ~248.1 nm in the case of poly-4,4'-(2-sodium sulfonate) -diphenylaminterephthalamide. It was shown that the decrease in the polymer content of units with sulfonate groups is accompanied by a decrease in the transformation degree from 0.65-0.66 to 0.18. It was found that the studied complexes can be transferred to the solution by increasing its ionic strength. The result obtained during this work can serve as a base for the development of for the manufacturing technology of film and membrane materials based on sulfonate-containing aromatic poly- and copolyamides.


2019 ◽  
Vol 97 (2) ◽  
pp. 125-132
Author(s):  
Francis Redfern

An observer moving parallel to a current-carrying wire detects an electric field due to the Lorentz transformation directed either toward or away from the wire, depending on the relative motion of observer and current. The accepted interpretation of this situation as viewed from the observer’s rest frame is that there is a net linear charge density on the wire. The Lorentz contraction of the separation of fixed ions and charge carriers is different due to their different speeds in the observer’s frame. The idea that a net charge exists on a wire in a reference frame moving parallel to the wire leads to the expectation that there is a charge separation seen on a moving current loop, resulting in paradoxes, such as that proposed by Mansuripur. I argue that the apparent charge on a current-carrying wire is due to a misinterpretation of the Lorentz transformation and is a consequence of the relativity of simultaneity. Given this insight, the nature of the fields of moving dipoles and the nature of the magnetization–polarization tensor are investigated.


Sign in / Sign up

Export Citation Format

Share Document